A photo of the circuit board with components soldered on

A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode

Normally when you think solar projects, you think of big photovoltaic cells. But a photodiode is just an inefficient, and usually much smaller, PV cell. Since [Pocket Concepts]’s Solar_nRF has such a low power budget, it can get away with using BPW34 photodiodes in place of batteries. (Video, embedded below.)

The BPW34 silicon PIN photodiode feeds a small voltage into a BQ25504 ultra-low-power boost converter energy harvester which stores power in a capacitor. When the capacitor is fully charged the battery-good pin is toggled which drives a MOSFET that powers everything downstream.

When it’s powered on, the Nordic nRF initializes, reads the current temperature from an attached I2C thermometer, and then sends out a Bluetooth Low Energy (BLE) advertising packet containing the temperature data. When the capacitor runs out of energy, the battery-good pin is turned off and downstream electronics become unpowered and the cycle begins again.

Continue reading “A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode”

Laptop Brick Is Brought Back From The Brink

We’ve all been there. [Kasyan TV] had a universal adapter for a used laptop, and though it worked for a long time, it finally failed. Can it be fixed? Of course, it can, but it is up to you if it is worth it or not. You can find [Kasyan’s] teardown and repair in the video below.

Inside the unit, there were a surprising number of components crammed into a small area. The brick also had power factor correction. The first step, of course, was to map out the actual circuit topology.

Continue reading “Laptop Brick Is Brought Back From The Brink”

New Bismuth Transistor Runs 40% Faster And Uses 10% Less Power

Recently in material science news from China we hear that [Hailin Peng] and his team at Peking University just made the world’s fastest transistor and it’s not made of silicon. Before we tell you about this transistor made from bismuth here’s a whirlwind tour of the history of the transistor.

The Bipolar Junction Transistor (BJT, such as NPN and PNP) was developed soon after the point-contact transistor which was developed at Bell Labs in 1947. Then after Resistor-Transistor Logic (RTL) came Transistor-Transistor Logic (TTL) made with BJTs. The problem with TTL was too much power consumption.

Continue reading “New Bismuth Transistor Runs 40% Faster And Uses 10% Less Power”

Dozens Of Solenoids Turn Vintage Typewriter Into A Printer

An electric typewriter is a rare and wonderful thrift store find, and even better if it still works. Unfortunately, there’s not as much use for these electromechanical beauties, so if you find one, why not follow [Konstantin Schauwecker]’s lead and turn it into a printer?

The portable typewriter [Konstantin] found, a Silver Reed 2200 CR, looks like a model from the early 1980s, just before PCs and word processing software would sound the death knell for typewriters. This machine has short-throw mechanical keys, meaning that a physical press of each key would be needed rather than electrically shorting contacts. Cue the order for 50 low-voltage solenoids, which are arranged in rows using 3D printed holders and aluminum brackets, which serve as heat sinks to keep the coils cool. The solenoids are organized into a matrix with MOSFET drivers for the rows and columns, with snubber diodes to prevent voltage spikes across the coils, of course. A Raspberry Pi takes care of translating an input PDF file into text and sending the right combination of GPIO signals to press each key.

The action of the space bar is a little unreliable, so page formatting can be a bit off, but other than that, the results are pretty good. [Konstantin] even managed to hook the printer up to his typewriter keyboard, which is pretty cool, too.

Continue reading “Dozens Of Solenoids Turn Vintage Typewriter Into A Printer”

Replacing Selenium Rectifiers

Old radios often had selenium rectifiers to convert AC to DC. The problem is that the old units, dating back to 1933, are prone to failure and to release dangerous chemicals like hydrogen selenide. [M Caldeira] has a new board made to fit a particular rectifier and also allows a varying voltage drop. The circuit consists of a few diodes, a MOSFET, and a pot for adjusting the voltage drop. An IRF840 MOSFET provides the adjustment.

Did it work? It did. The good news is that if it fails — which shouldn’t happen very often — it won’t release stinky and noxious fumes

We wondered if he should 3D print a fake case to make it look more the part. If you haven’t seen a real selenium rectifier, they were made of stacks of metal plates coated with bismuth or nickel. Then, a film of doped selenium was annealed to the surface to form cadmium selenide. Each plate could handle about 20 V and the more plates you used, the more reverse voltage the device could withstand.

Selenium was also found in old photocells. If you fancy replacing other parts of an old radio, you might consider a faux magic eye or even one of the main tubes.

Continue reading “Replacing Selenium Rectifiers”

Comparing AliExpress Vs LCSC-Sourced MOSFETs

The fake AliExpress-sourced IRFP460 MOSFETs (Credit: Learn Electronics Repair, YouTube)

These days, it’s super-easy to jump onto the World Wide Web to find purported replacement parts using nothing but the part identifier, whether it’s from a reputable source like Digikey or Mouser or from more general digital fleamarkets like eBay and AliExpress. It’s hardly a secret that many of the parts you can buy online via fleamarkets are not genuine. That is, the printed details on the package do not match the actual die inside. After AliExpress-sourced MOSFETs blew in a power supply repair by [Learn Electronics Repair], he first tried to give the MOSFETs the benefit of the doubt. Using an incandescent lightbulb as a current limiter, he analyzed the entire PSU circuit before putting the blame on the MOSFETs (IRFP460) and ordering new ones from LCSC.

Buying from a distributor instead of a marketplace means you can be sure the parts are from the manufacturer. This means that when a part says it is a MOSFET with specific parameters, it almost certainly is. A quick component tester session showed the gate threshold of the LCSC-sourced MOSFETs to be around 3.36V, while that of the AliExpress ‘IRFP460’ parts was a hair above 1.8V, giving a solid clue that whatever is inside the AliExpress-sourced MOSFETs is not what the package says it should be.

Unsurprisingly, after fitting the PSU with the two LCSC-sourced MOSFETs, there was no more magic smoke, and the PSU now works. The lesson here is to be careful buying parts of unknown provenance unless you like magic smoke and chasing weird bugs.

Continue reading “Comparing AliExpress Vs LCSC-Sourced MOSFETs”

An Open Source 6kW GaN Motor Controller

We don’t know how you feel when designing hardware, but we get uncomfortable at the extremes. High voltage or current, low noise figures, or extreme frequencies make us nervous.  [Orion Serup] from CrabLabs has been turning up a few of those variables and has created a fairly beefy 3-phase motor driver using GaN technology that can operate up to 80V at 70A. GaN semiconductors are a newer technology that enables greater power handling in smaller packages than seems possible, thanks to high electron mobility and thermal conductivity in the material compared to silicon.

The KiCAD schematic shows a typical high-power driver configuration, broken down into a gate pre-driver, the driver itself, and the following current and voltage sense sub-circuits. As is typical with high-power drivers, these operate in a half-bridge configuration with identical N-channel GaN transistors (specifically part EPC2361) driven by dedicated gate drivers (that’s the pre-driver bit) to feed enough current into the device to enable it to switch quickly and reliably.

The design uses the LM1025 low-side driver chip for this task, as you’d be hard-pushed to drive a GaN transistor with discrete components! You may be surprised that the half-bridge driver uses a pair of N-channel devices, not a symmetric P and N arrangement, as you might use to drive a low-power DC motor. This is simply because, at these power levels, P-channel devices are a rarity.

Why are P-channel devices rare? N-channel devices utilise electrons as the majority charge carrier, but P-channel devices utilise holes, and the mobility of holes in GaN is very low compared to that of electrons, resulting in much worse ON-resistance in a P-channel and, as a consequence, limited performance. That’s why you rarely see P-channel devices in a circuit like this.

Continue reading “An Open Source 6kW GaN Motor Controller”