Understanding Custom Signal Protocols With Old Nintendos

For retro gaming, there’s really no substitute for original hardware. As it ages, though, a lot of us need to find something passable since antique hardware won’t last forever. If a console isn’t working properly an emulator can get us some of the way there, but using an original controller is still preferred even when using emulators. To that end, [All Parts Combined] shows us how to build custom interfaces between original Nintendo controllers and a PC.

The build starts by mapping out the controller behavior. Buttons on a SNES controller don’t correspond directly to pins, rather a clock latches all of the button presses at a particular moment all at once during each timing event and sends that information to the console. To implement this protocol an Adafruit Trinket is used, and a thorough explanation of the code is given in the video linked below. From there it was a simple matter of building the device itself, for which [All Parts Combined] scavenged controller ports from broken Super Nintendos and housed everything into a tidy box where it can be attached via USB to his PC.

While it might seem like a lot of work to get a custom Nintendo controller interface running just because he had lost his Mega Man cartridge, this build goes a long way to understanding a custom controller protocol. Plus, there’s a lot more utility here than just playing Mega Man; a method like this could easily be used to interface other controllers as well. We’ve even seen the reverse process where USB devices were made to work on a Nintendo 64.

Continue reading “Understanding Custom Signal Protocols With Old Nintendos”

Game Boy Color Gets A Rechargeable Battery

Nintendo’s classic Game Boy has long been the darling queen of the handheld scene. However, with many fans modifying their handhelds with power-sucking features like modern backlit LCDs, running on AA batteries can become a frustrating exercise as they rapidly run out. [esotericsean] gets around that by modifying his Game Boys with a USB rechargeable battery setup. (Video, embedded below.)

The hack is a simple one, but the execution is quite tidy. [esotericsean] starts by removing the original DC jack from the Game Boy motherboard, and hogs out the hole in the case to fit a micro USB port. The original battery housing is similarly carved out to suit a 2000 mAh lithium-polymer pouch cell. A single-cell charging board is used to manage the battery, with its original connector removed and replaced with a neater-looking panel mount micro USB port instead. The electronics is then wrapped up in Kapton tape and stuffed inside the shell as everything is put back together.

The result is a USB rechargeable Game Boy that lasts for ages. [esotericsean] reports playing the console for hours each day for a full week without running out of power. The hack could become popular with chiptuners who often knock AA cells out of their handhelds during the more enthusiastic parts of their sets. We’ve seen similar hacks for other Game Boy models, too. Continue reading “Game Boy Color Gets A Rechargeable Battery”

Modifying A SNES Rom To Be Widescreen

Turning a game like Super Mario World for SNES into a widescreen game is not a small task, but [Vitor Vilela] accomplished just that. [Vitor] has a long list of incredible patches such as optimizing code for better frame rates and adding code to take advantage of the SA-1 accelerator chip, so out of anyone he has the know-how to pull a widescreen mod off. This patch represents a true labor of love as many levels were designed with a specific screen width in mind. [Vitor] went through each of these single-screen width levels and expanded them by writing the extra assembly needed.

On a technical level, this hack was achieved by using the panning feature built into the game. The left and right shoulder buttons allowed a player to pan the camera to the left and right. The viewport is considered to be two times the screen resolution and so items will be rendered within the widescreen resolution. By taking away the panning feature and render a larger section of the viewport to the screen, you get a widescreen view. However, to save cycles, enemies and items don’t start moving until they get close to the screen edge. So how do you make a game widescreen without ruining the timing of every enemy that spawns? Suddenly the hours of muscle memory that fans have drilled in over the years is a disadvantage rather than a strength. The answer is a significant time investment and an eye for detail.

All the code is available on GitHub. A video of a playthrough of the mod is after the break.

Continue reading “Modifying A SNES Rom To Be Widescreen”

Turning GameCube & N64 Pads Into MIDI Controllers

It’s fair to say that the Nintendo 64 and GameCube both had the most unique controllers of their respective console generations. The latter’s gamepads are still in high demand today as the Smash Bros. community continues to favor its traditional control scheme. However, both controllers can easily be repurposed for musical means, thanks to work by [po8aster].

The project comes in two forms – the GC MIDI Controller and the N64 MIDI Controller, respectively. Each uses an Arduino Pro Micro to run the show, a logic level converter, and [NicoHood’s] Nintendo library to communicate with the controllers. From there, controller inputs are mapped to MIDI signals, and pumped out over traditional or USB MIDI.

Both versions come complete with a synth mode and drum mode, in order to allow the user to effectively play melodies or percussion. There’s also a special mapping for playing drums using the Donkey Konga Bongo controller with the GameCube version. For those eager to buy a working unit rather than building their own, they’re available for purchase on [po8aster’s] website.

It’s a fun repurposing of video game hardware to musical ends, and we’re sure there’s a few chiptune bands out there that would love to perform with such a setup. We’ve seen other great MIDI hacks on Nintendo hardware before, from the circuit-bent SNES visualizer to the MIDI synthesizer Game Boy Advance. Video after the break.

Continue reading “Turning GameCube & N64 Pads Into MIDI Controllers”

The Ridiculous GameCube Keyboard Controller Gets Modded

Believe it or not, there was a keyboard peripheral sold for the original GameCube, and it was built into the middle of a controller. Designed for the Phantasy Star Online games, it allowed players to easily communicate with others via chat. [peachewire] got their hands on one, and set about modifying it in the way only a true keyboard fanatic could.

The result is a gloriously colorful keyboard and controller set up to work with a PC. The stock membrane keyboard was removed entirely, which is possible without interfering with the gamepad hardware inside the controller shell. It was replaced with a Preonic keyboard PCB, fitted with Lubed Glorious Panda switches and those wonderful pastel DSA Vilebloom keycaps. The keyboard also features a Durock screw-in stabilizer to make sure the  space key has a nice smooth action. The controller itself received a set of colored buttons to match the theme, setting off the aesthetic. It’s still fully functional, and can be used with an adapter to play games on the attached PC.

Overall, it’s a tidy controller casemod and one hell of a conversation starter when the crew are scoping out your battlestation. The added weight might make it a little straining for long gaming sessions in controller mode, but it looks so pretty we’re sure we wouldn’t notice.

We’ve seen keyboards and Nintendo mashed up before; this Smash Bros. controller makes excellent use of high quality keyswitches. Video after the break.

Continue reading “The Ridiculous GameCube Keyboard Controller Gets Modded”

Turning The Virtual Boy Into A Handheld Console

The Virtual Boy, Nintendo’s most infamous failure, was plagued by several issues. The most glaring problem was the red monochrome stereoscopic display technology which gave many users a headache after even a short time playing, but it’s sky-high price and extremely limited library of games kept many prospective buyers at bay as well. There was also the issue of portability: unlike the Game Boy it was named after, the Virtual Boy barely qualified as a portable system due to the fact it needed to be set up on a table to use.

But now, thanks to the tireless efforts of [Shank], at least a few of those issues have been resolved. He’s built the world’s first truly portable Virtual Boy, which swaps the system’s troubled 3D display for a modern IPS LCD panel. The custom handheld, designed to merge the Virtual Boy’s unique aesthetic with the iconic styling of the Game Boy Advance, looks like it came from some alternate timeline where Nintendo decided to produce a cheaper and less cumbersome version of the system rather than abandoning it.

While the work [Shank] has put into the project is unquestionably impressive, it should be said that it took the efforts of several talented hackers to create the handheld Virtual Boy. The key component that made the modification possible in the first place is the VirtualTap by [Furrtek], which not only provides the VGA output that’s driving the LCD panel, but fools the system’s motherboard into believing the servo-actuated stereoscopic display is still connected and active.

It’s also using the open source power management board that [GMan] originally developed for his own portable N64, [Bassline] chipped in to cast the custom buttons and D-pad in translucent resin, and [Mitch 3D] put an untold number of hours into printing and reprinting the system’s multicolored enclosure until it came out just right.

All the little details of the final system, which [Shank] calls the Real Boy, put this project into a league of its own. Special combinations of button presses allows the user to change the color of the display, should you get sick of the infamous red-tint. The buttons also have RGB LEDs behind them that correspond with the color scheme of the display itself, for that extra bit of gamer cred. He even made sure to include the system’s original link port, despite the fact that no officially released game ever made use of it.

Our first run in with [Shank] was when he demoed a portable Wii built into a mint tin. It made for a pretty pitiful gaming experience, but the project demonstrated his dedication to seeing a project through to the end. Watching his skills improve over the last few years has been inspiring, and we can’t wait to see what he comes up with next.

Continue reading “Turning The Virtual Boy Into A Handheld Console”

Nintendo DS Transformed Into Gameboy Macro

Nintendo’s Game Boy line were the world’s most popular handheld gaming systems, but did have their drawbacks. Most notably, the Game Boy didn’t receive a backlit color LCD until the Game Boy Advance SP launched in 2003. Of course, you can always build your own Game Boy that rectifies this and other shortcomings, and that’s what [JoshuaGuess] did with this Gameboy Macro build.

The build ends up like a bigger version of the Game Boy Micro, the final release in the Game Boy line.

The build is based around a Nintendo DS Lite, one of Nintendo’s later handhelds featuring dual screens. In this build, the top screen is removed and discarded entirely. The motherboard is then hacked with a resistor on some test points to allow it to still boot with the top missing. The shell of the bottom half is then cleverly modified with epoxy clay and paint in order to hide the original hinge and give a clean finished aesthetic.

The final result is essentially a larger version of the Game Boy Micro, the final handheld in the Game Boy line. It also has the benefit of a bigger, brighter screen compared to virtually any Game Boy ever made. The only thing to note is that the DS hardware can only play Game Boy Advance games, not the earlier 8-bit titles.

It’s a fun build, and one that goes to show you don’t have to throw a Raspberry Pi in everything to have a good time. That can be fun too, though. If you end up building the Game Boy Nano or Game Boy Giga, please let us know. Be sure to include measurements to indicate how it’s scaled in SI units relative to the Game Boy Micro itself.