Ploppy knob

Open-Source Knob Packed With Precision

The world of custom mechanical keyboards is vibrant, with new designs emerging weekly. However, keyboards are just one way we interact with computers. Ploopy, an open-source hardware company, focuses on innovative user interface devices. Recently, [Colin] from Ploopy introduced their latest creation: the Ploopy Knob, a compact and thoughtfully designed control device.

At first glance, the Ploopy Knob’s low-profile design may seem unassuming. Housed in a 3D-printed enclosure roughly the size of a large wristwatch, it contains a custom PCB powered by a USB-C connection. At its core, an RP2040 chip runs QMK firmware, enabling users to easily customize the knob’s functions.

The knob’s smooth rotation is achieved through a 6705ZZ bearing, which connects the top and bottom halves and spans nearly the device’s full width to eliminate wobble. Unlike traditional designs, the Ploopy Knob uses no mechanical encoder or potentiometer shaft. Instead, an AS5600 magnetic encoder detects movement with remarkable precision. This 12-bit rotary encoder can sense rotations as fine as 0.088 degrees, offering 4096 distinct positions for highly accurate control.

True to Ploopy’s philosophy, the Knob is fully open-source. On its GitHub Page, you’ll find everything from 3D-printed case files to RP2040 firmware, along with detailed guides for assembly and programming. This transparency empowers users to modify and build their own versions. Thanks to [Colin] for sharing this innovative device—we’re excited to see more open-source hardware from Ploopy. For those curious about other unique human-machine interfaces, check out our coverage of similar projects. Ploopy also has designs for trackballs (jump up a level on GitHub and you’ll see they have many interesting designs).

IOT 7-segment display

Modern Tech Meets Retro 7-Segment

At one point in time mechanical seven segment displays were ubiquitous, over time many places have replaced them with other types of displays. [Sebastian] has a soft spot for these old mechanically actuated displays and has built an open-source 7-segment display with some very nice features.

We’ve seen a good number of DIY 7-segment displays on this site before, the way [Sebastian] went about it resulted in a beautiful well thought out result. The case is 3D printed, and although there are two colors used it doesn’t require a multicolor 3d printer to make your own. The real magic in this build revolves around the custom PCB he designed. Instead of using a separate electromagnets to move each flap, the PCB has coil traces used to toggle the flaps. The smart placement of a few small screws allows the small magnets in each flap to hold the flap in that position even when the coils are off, greatly cutting down the power needed for this display. He also used a modular design where one block has the ESP32 and RTC, but for the additional blocks those components can remain unpopulated.

The work he put into this project didn’t stop at the hardware, the software also has a great number of thoughtful features. The ESP32 running the display hosts a website which allows you to configure some of the many features: the real-time clock, MQTT support, timer, custom API functions, firmware updates. The end result is a highly customizable, display that sounds awesome every time it updates. Be sure to check out the video below as well as his site to see this awesome display in action. Also check out some of the other 7-segment displays we’ve featured before.

Continue reading “Modern Tech Meets Retro 7-Segment”

Now KDE Users Will Get Easy Virtual Machine Management, Too

If you work with virtual machines, perhaps to spin up a clean OS install for testing, historically you have either bitten the bullet and used one of the commercial options, or spent time getting your hands dirty with something open source. Over recent years that has changed, with the arrival of open source graphical applications for effortless VM usage. We’ve used GNOME Boxes here to make our lives a lot easier.  Now KDE are also joining the party with Karton, a project which will deliver what looks very similar to Boxes in the KDE desktop.

The news comes in a post from Derek Lin, and shows us what work has already been done as well as a roadmap for future work. At the moment it’s in no way production ready and it only works with QEMU, but it can generate new VMs, run them, and capture their screens to a desktop window. Having no wish to join in any Linux desktop holy wars we look forward to seeing this piece of software progress, as it’s a Google Summer Of Code project we hope there will be plenty more to see shortly.

Still using the commercial option? You can move to open source too!

Various hardware components laid out on a workbench.

Working On Open-Source High-Speed Ethernet Switch

Our hacker [Andrew Zonenberg] reports in on his open-source high-speed Ethernet switch. He hasn’t finished yet, but progress has been made.

If you were wondering what might be involved in a high-speed Ethernet switch implementation look no further. He’s been working on this project, on and off, since 2012. His design now includes a dizzying array of parts. [Andrew] managed to snag some XCKU5P FPGAs for cheap, paying two cents in the dollar, and having access to this fairly high-powered hardware affected the project’s direction.

Continue reading “Working On Open-Source High-Speed Ethernet Switch”

An Open-Source Wii U Gamepad

Although Nintendo is mostly famous for making great games, they also have an infamous reputation for being highly litigious not only for reasonable qualms like outright piracy of their games, but additionally for more gray areas like homebrew development on their platforms or posting gameplay videos online. With that sort of reputation it’s not surprising that they don’t release open-source drivers for their platforms, especially those like the Wii U with unique controllers that are difficult to emulate. This Wii U gamepad emulator seeks to bridge that gap.

The major issue with the Wii U compared to other Nintendo platforms like the SNES or GameCube is that the controller looks like a standalone console and behaves similarly as well, with its own built-in screen. Buying replacement controllers for this unusual device isn’t straightforward either; outside of Japan Nintendo did not offer an easy path for consumers to buy controllers. This software suite, called Vanilla, aims to allow other non-Nintendo hardware to bridge this gap, bringing in support for things like the Steam Deck, the Nintendo Switch, various Linux devices, or Android smartphones which all have the touch screens required for Wii U controllers. The only other hardware requirement is that the device must support 802.11n 5 GHz Wi-Fi.

Although the Wii U was somewhat of a flop commercially, it seems to be experiencing a bit of a resurgence among collectors, retro gaming enthusiasts, and homebrew gaming developers as well. Many games were incredibly well made and are still experiencing continued life on the Switch, and plenty of gamers are looking for the original experience on the Wii U instead. If you’ve somehow found yourself in the opposite position of owning of a Wii U controller but not the console, though, you can still get all the Wii U functionality back with this console modification.

Thanks to [Kat] for the tip!

Open Source Firmware For The JYE TECH DSO-150

The Jye Tech DSO-150 is a capable compact scope that you can purchase as a kit. If you’re really feeling the DIY ethos, you can go even further, too, and kit your scope out with the latest open source firmware.

The Open-DSO-150 firmware is a complete rewrite from the ground up, and packs the scope with lots of neat features. You get one analog or three digital channels, and triggers are configurable for rising, falling, or both edges on all signals. There is also a voltmeter mode, serial data dump feature, and a signal statistics display for broader analysis.

Continue reading “Open Source Firmware For The JYE TECH DSO-150”

Open Source Hardware, How Open Do You Want It To Be?

In our wider community we are all familiar with the idea of open source software. Many of us run it as our everyday tools, a lot of us release our work under an open source licence, and we have a pretty good idea of the merits of one such document over another. A piece of open source software has all of its code released under a permissive licence that explicitly allows it to be freely reproduced and modified, and though some people with longer beards take it a little too seriously at times and different flavours of open source work under slightly different rules, by and large we’re all happy with that.

When it comes to open hardware though, is it so clear cut?  I’ve had more than one rant from my friends over the years about pieces of hardware which claim to be open-source but aren’t really, that I think this bears some discussion.

Open Source Hardware As It Should Be Done

To explore this, we’ll need to consider a couple of open source hardware projects, and I’ll start close to home with one of my own. My Single 8 home movie cartridge is a 3D printable film cartridge for a defunct format, and I’ve put everything necessary to create one yourself in a GitHub repository under the CERN OHL. If you download the file and load it into OpenSCAD you can quickly create an STL file for your slicer, or fiddle with the code and make an entirely new object. Open source at its most efficient, and everyone’s happy. I’ve even generated STLs ready to go for each of the supported ISO values. Continue reading “Open Source Hardware, How Open Do You Want It To Be?”