A Forgotten Photographic Process Characterised

Early photography lacked the convenience of the stable roll film we all know, and instead relied on a set of processes which the photographer would have to master from film to final print. Photographic chemicals could be flammable or even deadly, and results took a huge amount of work.

The daguerreotype process of using mercury to develop pictures on polished metal, and the wet-collodion plate with its nitrocellulose solution are well-known, but as conservators at the British National Archives found out, there was another process that’s much rarer. The Pannotype uses a collodion emulsion, but instead of the glass plate used by the wet-plate process it uses a fabric backing.

We know so much about the other processes because they were subject to patents, but pannotype never had a patent due to a disagreement. Thus when the conservators encountered some pannotypes in varying states of preservation, they needed to apply modern analytical techniques to understand the chemistry and select the best methods of stabilization. The linked article details those analyses, and provides them with some pointers towards conserving their collection. We look forward to someone making pannotype prints here in 2025, after all it’s not the first recreation of early photography we’ve seen.

Using Four Rolls Of Film To Make One Big Photo

Typically, if you’re shooting 35 mm film, you’re using it in an old point-and-shoot or maybe a nice SLR. You might even make some sizeable prints if you take a particularly good shot. But you can get altogether weirder with 35 mm if you like, as [Socialmocracy] demonstrates with his “extreme sprocket hole photography” project (via Petapixel).

The concept is simple enough. [Socialmocracy] wanted to expose four entire rolls of 35 mm film all at the same time in one single shot. To be absolutely clear, we’re not talking about exposing a frame on each of four rolls at once. We’re talking about a single exposure covering the entire length of all four films, stacked one on top of the other.

To achieve this, an old-school Cirkut No.6 Outfit camera was pressed into service. It’s a large format camera, originally intended for shooting panoramas. As the camera rotated around under the drive of a clockwork motor, it would spool out more film to capture an image.

[Socialmocracy] outfitted the 100-year-old camera with a custom 3D-printed spool that could handle four rolls of film at once, rather than its usual wide single sheet of large format film. This let the camera shoot its characteristic panoramas, albeit spread out over multiple rolls of film, covering the sprocket holes and all. Hence the name—”extreme sprocket hole photography.”

It’s a neat build, and one that lets [Socialmocracy] use more readily available film to shoot fun panoramas with this old rig. We’ve featured some other great film camera hacks over the years, too, like this self-pack Polaroid-style film. Video after the break.

Continue reading “Using Four Rolls Of Film To Make One Big Photo”

DIY Open-Source Star Tracker Gets You Those Great Night Shots

What does one do when frustrated at the lack of affordable, open source portable trackers? If you’re [OG-star-tech], you design your own and give it modular features that rival commercial offerings while you’re at it.

What’s a star tracker? It’s a method of determining position based on visible stars, but when it comes to astrophotography the term refers to a sort of hardware-assisted camera holder that helps one capture stable long-exposure images. This is done by moving the camera in such a way as to cancel out the effects of the Earth’s rotation. The result is long-exposure photographs without the stars smearing themselves across the image.

Interested? Learn more about the design by casting an eye over the bill of materials at the GitHub repository, browsing the 3D-printable parts, and maybe check out the assembly guide. If you like what you see, [OG-star-tech] says you should be able to build your own very affordably if you don’t mind 3D printing parts in ASA or ABS. Prefer to buy a kit or an assembled unit? [OG-star-tech] offers them for sale.

Frustration with commercial offerings (or lack thereof) is a powerful motive to design something or contribute to an existing project, and if it leads to more people enjoying taking photos of the night sky and all the wonderful things in it, so much the better.

Release Your Inner Ansel Adams With The Shitty Camera Challenge

Social media microblogging has brought us many annoying things, but some of the good things that have come to us through its seductive scrolling are those ad-hoc interest based communities which congregate around a hashtag. There’s one which has entranced me over the past few years which I’d like to share with you; the Shitty Camera Challenge. The premise is simple: take photographs with a shitty camera, and share them online. The promise meanwhile is to free photography from kit acquisition, and instead celebrate the cheap, the awful, the weird, and the wonderful in persuading these photographic nonentities to deliver beautiful pictures.

Where’s The Hack In Taking A Photo?

Of course, we can already hear you asking where the hack is in taking a photo. And you’d be right, because any fool can buy a disposable camera and press the shutter a few times. But from a hardware hacker perspective this exposes the true art of camera hacking, because not all shitty cameras can produce pictures without some work.

The #ShittyCameraChallenge has a list of cameras likely to be considered shitty enough, they include disposables, focus free cameras, instant cameras, and the cheap plastic cameras such as Lomo or Holga. But also on the list are models which use dead film formats, and less capable digital cameras. It’s a very subjective definition, and thus in our field everything from a Game Boy camera or a Raspberry Pi camera module to a home-made medium format camera could be considered shitty. Ans since even the ready-made shitty cameras are usually cheap and unloved second-hand, there’s a whole field of camera repair and hacking that opens up. Finally, here’s a photography competition that’s fairly and squarely on the bench of Hackaday readers. Continue reading “Release Your Inner Ansel Adams With The Shitty Camera Challenge”

Good Lighting On A Budget With Cordless Tool Batteries

It’s perhaps not fair, but even if you have the best idea for a compelling video, few things will make people switch off than poor lighting. Good light and plenty of it is the order of the day when it comes to video production, and luckily there are many affordable options out there. Affordable, that is, right up to the point where you need batteries for remote shoots, in which case you’d better be ready to open the purse strings.

When [Dane Kouttron] ran into the battery problem with his video lighting setup, he fought back with these cheap and clever cordless tool battery pack adapters. His lights were designed to use Sony NP-F mount batteries, which are pretty common in the photography trade but unforgivably expensive, at least for Sony-branded packs. Having access to 20 volt DeWalt battery packs, he combined an off-the-shelf battery adapter with a 3D printed mount that slips right onto the light. Luckily, the lights have a built-in DC-DC converter that accepts up to 40 volts, so connecting the battery through a protection diode was a pretty simple exercise. The battery pack just slots right in and keeps the lights running for portable shoots.

Of course, if you don’t already have DeWalt batteries on hand, it might just be cheaper to buy the Sony batteries and be done with it. Then again, there are battery adapters for pretty much every cordless tool brand out there, so you should be able to adapt the design. We’ve also seen cross-brand battery adapters which might prove useful, too.

How Much Resolution Does Film Really Have?

Have you ever scanned old negatives or print photographs? Then you’ve probably wondered about the resolution of your scanner, versus the resolution of what you’re actually scanning. Or maybe, you’ve looked at digital cameras, and wondered how many megapixels make up that 35mm film shot. Well [ShyStudios] has been pondering these very questions, and they’ve shared some answers.

The truth is that film doesn’t really have a specific equivalent resolution to a digital image, as it’s an analog medium that has no pixels. Instead, color is represented by photoreactive chemicals. Still, there are ways to measure its resolution—normally done in lines/mm, in the simplest sense.

[ShyStudios] provides a full explanation of what this means, as well as more complicated ways of interpreting analog film resolution. Translating this into pixel equivalents is messy, but [ShyStudios] does some calculations to put a 35mm FujiColor 200 print around the 54 megapixel level. Fancier films can go much higher.

Of course, there are limitations to film, and you have to use it properly. But still, it gives properly impressive resolution even compared to modern cameras. As it turns out, we’ve been talking about film a lot lately! Video after the break.

Continue reading “How Much Resolution Does Film Really Have?”

Autochrome For The 2020s

For all intents and purposes, photography here in 2024 is digital. Of course chemical photography still exists, and there are a bunch of us who love it for what it is, but even as we hang up our latest strip of negatives to dry we have to admit that it’s no longer mainstream. Among those enthusiasts who work with conventional black-and-white or dye-coupler colour film are a special breed whose chemistry takes them into more obscure pathways.

Wet-collodion plates for example, or in the case of [Jon Hilty], the Lumière autochrome process. This is a colour photography process from the early years of the twentieth century, employing a layer of red, green, and blue grains above a photosensitive emulsion. Its preparation is notoriously difficult, and he’s lightened the load somewhat with the clever use of CNC machinery to automate some of it.

Pressing the plates via CNC

His web site has the full details of how he prepares and exposes the plates, so perhaps it’s best here to recap how it works. Red, green, and blue dyed potato starch grains are laid uniformly on a glass plate, then dried and pressed to form a random array of tiny RGB filters. The photographic emulsion is laid on top of that, and once it is ready the exposure is made from the glass side do the light passes through the filters.

If the emulsion is then developed using a reversal process as for example a slide would be, the result is a black and white image bearing colour information in that random array, which when viewed has red, green, and blue light from those starch filters passing through it. To the viewer’s eye, this then appears as a colour image.

We can’t help being fascinated by the autochrome process, and while we know we’ll never do it ourselves it’s great to see someone else working with it and producing 21st century plates that look a hundred years old.

While this may be the first time we’ve featured such a deep dive into autochrome, it’s certainly not the first time we’ve looked at alternative photographic chemistries.