A Behind The Scenes Look At Small Scale Production

Back in 2013, [Karl Lautman] successfully got his kinetic sculpture Primer funded on Kickstarter. As the name implies, you press the big red button on the front of the device, and the mechanical counter at the top will click over to a new prime number for your viewing pleasure. Not exactly a practical gadget, but it does look pretty slick.

These days you can still by your very own Primer from [Karl], but he tells us that the sales aren’t exactly putting food on the table. At this point, he considers it more of a self-financing hobby. To illustrate just what goes into the creation of one of these beauties, he’s put together a time-lapse video of how one gets built from start to finish, which you can see after the break.

Even if you’re not interested in adding a mathematics appliance to your home, we think you’ll agree that the video is a fascinating look at the effort that goes into manufacturing a product that’s only slightly north of a one-off creation.

The biggest takeaway is that you really need to be a jack of all trades to pull something like this off. From milling and polishing the metal components to hand-placing the SMD parts and reflowing the board, [Karl] demonstrates the sort of multi-disciplinary mastery you need to have when there’s only one person on the assembly line.

Small scale manufacturing isn’t cheap, and is rarely easy. But stories like this one prove it’s certainly possible if you’re willing to put in the effort.

Continue reading “A Behind The Scenes Look At Small Scale Production”

Giant Mersenne Prime Found

Ever hear of a Mersenne prime? These are prime numbers that are one less than a power of two. Named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century, there is a distributed computing project on the Internet to find Mersenne primes called GIMPS (Great Internet Mersenne Prime Search). The project recently announced they have found the largest known prime.

Continue reading “Giant Mersenne Prime Found”

Embeded Sieve Of Eratosthenes: Hunting Primes On ARM

Embeded Sieve of Eratosthenes

I ended up with just enough time over the weekend to pull together a quick project. I implemented the Sieve-of-Eratosthenes on an ARM chip.

If you haven’t heard of the Sieve of Eratosthenes then you really need to work your way through Project Euler. That’s where I first learned about this method of finding prime numbers. You begin with a list of all numbers, find a prime, then remove all multiples of that prime from the list. The real trick with doing it on a microcontroller is to figure out how to store a large list of numbers in a limited space. The gist of my method was to use a boolean array (I call it a bit-packed array but that may be the wrong way of saying it). The details are found in my project linked at the top.

‘Why?’ is almost always the wrong question to ask around here. But in this case, I did this because I wanted to try out the Bit Banding functionality of the ARM core. These chips have alias addresses that map to a single bit in the SRAM and also some of the peripheral registers. This allows read or write access for a single bit using a single instruction. Turns out that one side effect of 32-bit architecture is having addresses to burn.

ATtiny2313 Prime Number Generator

[Scott Harden’s] prime number generator exhibits a great way to use an LED matrix to present readable information. The project resides in a hinged wooden box with a grid of holes on the lid for the LEDs. [Scott] has overlaid the matrix with a printout showing powers of two that represent different prime numbers. Inside you’ll find an ATtiny2313 microcontroller that handles the column scanning and prime number testing. We’ve embedded a video the break where [Scott] explains the project in great detail, but you should also check out his prototyping and construction pages.

Continue reading “ATtiny2313 Prime Number Generator”