2018: As The Hardware World Turns

2018 is almost over, and we have another year in the dataset: an improbable number of celebrities died in 2016. The stock market is down, and everyone thinks a crash is coming. Journalists are being killed around the world. Fidget spinners aren’t cool anymore. Fortnite. Trade wars.

But not everything is terrible: Makerbot released a new printer and oddly no one complained. It was just accepted that it was an overpriced pile of suck. Elon Musk is having a great year, press and Joe Rogan notwithstanding, by launching a record number of rockets and shipping a record number of cars, and he built a subway that we’re not calling a subway. FPGA development is getting easier with new platforms and new boards. There is a vast untapped resource in 18650 cells just sitting on sidewalks in the form of scooters, and I’m going to keep mentioning this until someone actually builds a power wall out of scooters.

Continue reading “2018: As The Hardware World Turns”

How A Microcontroller Hiding In A USB Port Became An FPGA Hiding In The Same

When you think of microcontroller development, you probably picture either a breadboard with a chip or a USB-connected circuit board. But Tim Ansell pictured an ARM dev board that is almost completely hidden inside of a USB port. His talk at the 2018 Hackaday Superconference tells that story and then some. Check out the newly published video, along with more details of the talk, after the break.

Continue reading “How A Microcontroller Hiding In A USB Port Became An FPGA Hiding In The Same”

RISC-V Will Stop Hackers Dead From Getting Into Your Computer

The greatest hardware hacks of all time were simply the result of finding software keys in memory. The AACS encryption debacle — the 09 F9 key that allowed us to decrypt HD DVDs — was the result of encryption keys just sitting in main memory, where it could be read by any other program. DeCSS, the hack that gave us all access to DVDs was again the result of encryption keys sitting out in the open.

Because encryption doesn’t work if your keys are just sitting out in the open, system designers have come up with ingenious solutions to prevent evil hackers form accessing these keys. One of the best solutions is the hardware enclave, a tiny bit of silicon that protects keys and other bits of information. Apple has an entire line of chips, Intel has hardware extensions, and all of these are black box solutions. They do work, but we have no idea if there are any vulnerabilities. If you can’t study it, it’s just an article of faith that these hardware enclaves will keep working.

Now, there might be another option. RISC-V researchers are busy creating an Open Source hardware enclave. This is an Open Source project to build secure hardware enclaves to store cryptographic keys and other secret information, and they’re doing it in a way that can be accessed and studied. Trust but verify, yes, and that’s why this is the most innovative hardware development in the last decade.

Continue reading “RISC-V Will Stop Hackers Dead From Getting Into Your Computer”

VexRISC-V Exposed

If you want to use FPGAs, you’ll almost always use an HDL like Verilog or VHDL. These are layers of abstraction just like using, say, a C compiler is to machine language or assembly code. There are other challengers to the throne such as SpinalHDL which have small but enthusiastic followings. [Tom] has a post about how the VexRISC-V CPU leverages SpinalHDL to make an extremely flexible system that is as efficient as plain Verilog. He says the example really shows off why you should be using SpinaHDL.

Like a conventional programming language, it is easy to find niche languages that will attract a little attention and either take off (say, C++, Java, or Rust) or just sort of fade away. The problem is you can’t ever tell which ones are going to become major and which are just flashes in the pan. Is SpinalHDL the next big thing? We don’t know.

Continue reading “VexRISC-V Exposed”

RISC-V CPU Gets A Peripheral

One of the ways people use FPGAs is to have part of the FPGA fabric hold a CPU. That makes sense because CPUs are good at some jobs that are hard to do with an FPGA, and vice versa. Now that the RISC-V architecture is available it makes sense that it can be used as an FPGA-based CPU. [Clifford Wolf] created PicoSOC — a RISC-V CPU made to work as a SOC or System on Chip with a Lattice 8K evaluation board. [Mattvenn] ported that over to a TinyFPGA board that also contains a Lattice FPGA and shows an example of interfacing it with a WS2812 intelligent LED peripheral. You can see a video about the project, below.

True to the open source nature of the RISC-V, the project uses the open source Icestorm toolchain which we’ve talked about many times before. [Matt] thoughtfully provided the firmware precompiled so you don’t have to install gcc for the RISC-V unless you want to write you own software. Which, of course, you will.

Continue reading “RISC-V CPU Gets A Peripheral”

Hackaday Links: October 14, 2018

Here’s something of interest of 3D printing enthusiasts. How do you print lightweight 3D objects? [Tom Stanton] does a lot of stuff with 3D printing and RC airplanes, so yeah, he’s probably the guy you want to talk to. His solution is Simplify3D, printing two layers for whatever nozzle diameter you have, some skills with Fusion360, and some interesting design features that include integrated ribs.

Moog released their first polyphonic analog synth in 35 years. It’s massive, and it costs eight thousand dollars.

There’s a RISC-V contest, sponsored by Google, Antmicro, and Microchip. The goal is to encourage designers to create innovative FPGA and soft CPU implementations with the RISC-V ISA. There are four categories, the smallest implementation for SpartFusion2 or IGLOO2 boards, and the smallest implementation that fits on an iCE40 UltraPlus board. The two additional categories are the highest performance implementation for these boards. The prize is $6k.

” I heard about polarization filters and now I’m getting a hundred thousand dollars” — some moron. IRL Glasses are glasses that block screens. When you wear them, you can’t watch TV. This is great, as now all advertising is on TVs for some inexplicable reason, and gives these people an excuse to use frames from John Carpenter’s masterpiece They Live in their Kickstarter campaign. Question time: why don’t all polarized sunglasses do this. Because there’s a difference between linear and circular polarized lenses. Question: there have been linear polarized sunglasses sitting in the trash since the release of James Cameron’s Avatar. Why now? No idea.

Alexa is on the ESP32. Espressif released their Alexa SDK that supports conversations, music and audio serivces (Alexa, play Despacito), and alarms. The supported hardware is physically quite large, but it can be extended to other ESP32-based platforms that have SPI RAM.

Programming A RISC-V Softcore With Ada

We were contacted by [morbo] to let us know about a project on the AdaCore blog that concerns programming a PicoRV32 RISC-V softcore with Ada. The softcore itself runs on a Lattice ICE40LP8K-based TinyFPGA-BX FPGA board, which we have covered in the past.

The blog post describes how to use the Community edition of the GNAT Ada compiler to set up the development environment, before implementing a simple example project that controls a strip of WS28212b RGB LED modules. There are two push buttons changing the animation and brightness of the lights.

The source can be found at the author’s Github repository, and contains both the Ada source and the Verilog source for the PicoRV32 softcore. To build the project one needs the GNAT compiler, as well as the open-source iCE40 development tools to compile the softcore.

There is a video demonstrating the finished example project, that we’ve placed below the break.

Continue reading “Programming A RISC-V Softcore With Ada”