It’s Raining Chinese Space Stations: Tiangong-1

China’s first space station, Tiangong-1, is expected to do an uncontrolled re-entry on April 1st, +/- 4 days, though the error bars vary depending on the source. And no, it’s not the grandest of all April fools jokes. Tiangong means “heavenly palace”, and this portion of the palace is just one step of a larger, permanent installation.

But before detailing just who’ll have to duck when the time comes, as well as how to find it in the night sky while you still can, let’s catch up on China’s space station program and Tiangong-1 in particular.

Continue reading “It’s Raining Chinese Space Stations: Tiangong-1”

Hackaday Links Column Banner

Hackaday Links: March 25, 2018

File this one under, ‘don’t do this yourself, but we’re glad they filmed it.’ [Denis Koryakin] flew a quadcopter to 10km, or about 33,000 feet. This was just an experiment to see if it was possible. A few items of note from the video: this thing was climbing at 14-15 m/s when it first took off. It was barely climbing at 2 m/s at 10km. Second: it was really, really cold. The ground temperature was -10 C, and temperatures at 8km reached -50 C. Density altitude is on this guy’s side, and I don’t know if this would be possible in warmer temperatures.

Hold on to your hats, there’s a gigantic space station that’s going to crash sometime in the next few weeks. Tiangong-1, an 8-ton space station launched in 2011, is going to reenter the atmosphere ‘sometime between March 30 and April 6’. Because of orbits and stuff, it’s more likely to reenter at the highest latitudes, and this space station has an inclination of 42.7 degrees. If your latitude is 42° N or 42° S, you should probably pull a Liza Minnelli on this situation and spend the next month in bed.

Hey, cool! The Tindie Badge is being used to teach orphans in Bosnia how to solder.

The BBC has decided to cancel Robot Wars. No, it’s not Battlebots — the house robots always seemed to be a bit overkill and added too much drama. No, it’s not Scrapheap Challenge or Junkyard Wars, but Robot Wars was legitimately fun, and cheap-to-produce reality TV. The engineering that went into these bots was amazing, and this is a loss for the entire engineering community. Here’s a change.org petition against its cancellation, but we all know how successful those change.org petitions can be.

FREE CHIPS!. Free motor drivers, actually, which is even more impressive. Aisler puts together BOMs for projects and such — think of it as an on-demand kitting service. They’re throwing in free Trinamic drivers with orders. Someone should build a motor driver breakout.

Lost In Space: How Materials Degrade In Space

Hackaday readers are well aware of the problems caused by materials left exposed to the environment over time, whether that be oxidized contact pads on circuit boards or plastics made brittle from long exposure to the sun’s UV rays.

Now consider the perils faced by materials on the International Space Station (ISS), launched beginning in 1998 and planned to be used until 2028. That’s a total of 30 years in an environment of unfiltered sunlight, extreme temperatures, micrometeoroids, and even problems caused by oxygen. What about the exposure faced by the newly launched Tesla Roadster, an entirely non-space hardened vehicle on a million-year orbit around the sun? How are the materials which make up the ISS and the Roadster affected by the harsh space environment?

Fortunately, we’ve been doing experiments since the 1970s in Earth orbit which can give us answers. The missions and experiments themselves are as interesting as the results so let’s look at how we put materials into orbit to be tested against the rigors of space.

Continue reading “Lost In Space: How Materials Degrade In Space”

Salyut: How We Learned To Make Space Stations

When you think about space stations, which ones come to mind first? You might think Skylab, the International Space Station (ISS), or maybe Russia’s Mir. But before any of those took to the heavens, there was Salyut.

Russia’s Salyut 1 was humankind’s first space station. The ensuing Salyut program lasted fifteen years, from 1971 to 1986, and the lessons learned from this remarkable series of experiments are still in use today in the International Space Station (ISS). The program was so successful at a time when the US manned space program was dormant that one could say that the Russians lost the Moon but won the space race.

Continue reading “Salyut: How We Learned To Make Space Stations”

The Russians And The Americans Only Want The Moon

For the generations who lived through the decades of the Space Race, the skies above were an exciting place. Every month it seemed there was a new announcement of a new mission, a Lunar landing, new pictures from a planetary probe, or fresh feats of derring-do from astronauts or cosmonauts. Space was inspiring!

As we moved through the Shuttle, Mir, and ISS eras, the fascinating work didn’t stop. The Mars rovers, the Cassini probe, the Chang-e Lunar mission, or the Hubble telescope, to name just a very few. But somehow along the way, space lost the shine for the general public, it became routine, mundane, even. Shuttle missions and Soyuz craft carrying ISS astronauts became just another feature on the news, eventually consigned only to the technology section of the broadcaster’s website. The TV comedy Big Bang Theory derived humor from this, when a character becomes an ISS astronaut, yet is still a nobody on his return to Earth.

If you yearn for a bit of that excitement from the Space Race days you may just find it in another story tucked away in the tech sections, though it comes from a collaboration rather than a competition. NASA and the Russian space agency Roscosmos have announced a partnership to take what will be the next step towards a future of deep space exploration, to place a manned space station in a Lunar orbit. The idea is that it would serve first as a valuable research platform for missions in deeper space than the current relatively low orbit of the ISS, and then as a launch base for both lunar missions and those further afield in the Solar System.

Of course, there is no lunar-orbiting station, yet. There is a long and inglorious history of proposed space missions that never left the drawing board, and this one may yet prove to be the next addition to it. But what are real are the two indisputable facts, that NASA and Roscosmos have inked this partnership, and eventually there will have to be a replacement for the ISS. This project stands a good chance of being that replacement, which makes it of great interest to anyone with an interest in technology. It’s a little out of the world of usual Hackaday fodder, but if you are like us you will want to believe that one day it will be launched.

Even with a lunar orbiting space station, it will be a very long time indeed before we see manned missions going significantly further into the Solar system. Perhaps another approach is required to go further, a laser-driven silicon wafer aimed at a nearby star.

Moon image: 阿爾特斯 [CC BY-SA 3.0].

Flying The First Open Source Satellite

The Libre Space Foundation is an organization dedicated to the development of libre space hardware. It was born from the SatNOGS project — the winners of the first Hackaday Prize — and now this foundation is in space. The Libre Space Foundation hitched a ride on the Orbital ATK launch yesterday, and right now their completely Open Source cube sat is on its way to the International Space Station.

The cube sat in question is UPSat, a 2U cubesat that is completely Open Source. Everything from the chassis to the firmware is completely Open, with all the source files hosted on GitHub.

UPSat is currently on its way to the International Space Station stowed in an Orbital ATK Cygnus cargo spacecraft. From here, the UPSat will be unloaded by members of the current ISS expedition and deployed with help from NanoRacks. Basically, the first Open Source satellite will be tossed overboard from the International Space Station. If you want to listen in on the data UPSat is beaming down, build a SatNOGS ground station and tune into 435.765 MHz. With a good antenna, you should be able to hear it when the ISS is in the sky, or a few times a week.

You can check out the launch of the Cygnus the UPSat is flying on in the video below. NASA also recorded a 360° video from the launch pad that unfortunately cuts out in the first few seconds after launch.

Continue reading “Flying The First Open Source Satellite”

Hams In Space Part 2: The Manned Spaceflights

Whether it’s trying to make contacts across the planet with a transmitter that would have a hard time lighting an LED, or blasting signals into space and bouncing them off the moon, amateur radio operators have always been on the forefront of communications technology. As mankind took to space in the 1950s and 1960s, hams went along for the ride with the first private satellites. But as successful as the OSCAR satellites were, they were still at best only beacons or repeaters in space. What was needed was the human touch – a real live operator making contacts with people on the ground, showing the capabilities of amateur radio while generating public interest in the space program. What was needed was a ham in space. Continue reading “Hams In Space Part 2: The Manned Spaceflights”