India’s Moon Mission Is Far From Over

India’s Chandrayaan-2 mission to the Moon was, in a word, ambitious. Lifting off from the Satish Dhawan Space Centre on July 22nd, the mission hoped to simultaneously deliver an orbiter, lander, and rover to our nearest celestial neighbor. The launch and flight to the Moon went off without a hitch, and while there were certainly some tense moments, the spacecraft ultimately put itself into a stable lunar orbit and released the free-flying lander so it could set off on its independent mission.

Unfortunately, just seconds before the Vikram lander touched down, an anomaly occurred. At this point the Indian Space Research Organisation (ISRO) still doesn’t know exactly what happened, but based on the live telemetry stream from the lander, some have theorized the craft started tumbling or otherwise became unstable between three and four kilometers above the surface.

Telemetry indicates a suboptimal landing orientation

In fact, for a brief moment the telemetry display actually showed the Vikram lander completely inverted, with engines seemingly accelerating the spacecraft towards the surface of the Moon. It’s unclear whether this was an accurate depiction of the lander’s orientation in the final moments before impact or a glitch in the real-time display, but it’s certainly not what you want to see when your craft is just seconds away from touchdown.

But for Chandrayaan-2, the story doesn’t end here. The bulk of the mission’s scientific goals were always to be accomplished by the orbiter itself. There were of course a number of scientific payloads aboard the Vikram lander, and even the Pragyan rover that it was carrying down to the surface, but they were always secondary objectives at best. The ISRO was well aware of the difficulties involved in making a soft landing on the Moon, and planned their mission objectives accordingly.

Rather than feel sorrow over the presumed destruction of Vikram and Pragyan, let’s take a look at the scientific hardware aboard the Chandrayaan-2 orbiter, and the long mission that still lies ahead of it.

Continue reading “India’s Moon Mission Is Far From Over”

Interstellar 8-Track: The Not-So-Low-Tech Data Recorders Of Voyager

On the outside chance that we ever encounter a space probe from an alien civilization, the degree to which the world will change cannot be overestimated. Not only will it prove that we’re not alone, or more likely weren’t, depending on how long said probe has been traveling through space, but we’ll have a bonanza of super-cool new technology to analyze. Just think of the fancy alloys, the advanced biomimetic thingamajigs, the poly-godknowswhat composites. We’ll take a huge leap forward by mimicking the alien technology; the mind boggles.

Sadly, we won’t be returning the favor. If aliens ever snag one of our interstellar envoys, like one of the Voyager spacecraft, they’ll see that we sent them some really old school stuff. While one team of alien researchers will be puzzling over why we’d encode images on a phonograph record, another team will be tearing apart – an 8-track tape recorder?

Continue reading “Interstellar 8-Track: The Not-So-Low-Tech Data Recorders Of Voyager”

Before Sending A Probe To The Sun, Make Sure It Can Take The Heat

This past weekend, NASA’s Parker Solar Probe took off for a journey to study our local star. While its mission is well covered by science literate media sources, the equally interesting behind-the-scenes information is a little harder to come by. For that, we have Science News who gave us a look at some of the work that went into testing the probe.

NASA has built and tested space probes before, but none of them were destined to get as close to the sun as Parker will, creating new challenges for testing the probe. The lead engineer for the heat shield, Elizabeth Congdon, was quoted in the article: “Getting things hot on Earth is easier than you would think it is, getting things hot on Earth in vacuum is difficult.” The team used everything from a concentrated solar facility to hacking IMAX movie projector lenses.

The extreme heat also posed indirect problems elsewhere on the probe. A rocket launch is not a gentle affair, any cargo has to tolerate a great deal of shock and vibration. A typical solution for keeping fasteners in place is to glue them down with an epoxy, but they’d melt where Parker is going so something else had to be done. It’s not all high technology and exotic materials, though, as when the goal was to verify that the heat shield was strong enough to withstand up to 20G of acceleration expected during launch, the test team simulated extra weight by stacking paper on top of it.

All that testing should ensure Parker can perform its mission and tell us a lot of interesting things about our sun. And if you got in on the publicity campaign earlier this year, your name is along for the ride.

Not enough space probe action for the day? We’ve also recently featured how creative hacking gave the exoplanet hunter Kepler a second lease on life.

The Russians And The Americans Only Want The Moon

For the generations who lived through the decades of the Space Race, the skies above were an exciting place. Every month it seemed there was a new announcement of a new mission, a Lunar landing, new pictures from a planetary probe, or fresh feats of derring-do from astronauts or cosmonauts. Space was inspiring!

As we moved through the Shuttle, Mir, and ISS eras, the fascinating work didn’t stop. The Mars rovers, the Cassini probe, the Chang-e Lunar mission, or the Hubble telescope, to name just a very few. But somehow along the way, space lost the shine for the general public, it became routine, mundane, even. Shuttle missions and Soyuz craft carrying ISS astronauts became just another feature on the news, eventually consigned only to the technology section of the broadcaster’s website. The TV comedy Big Bang Theory derived humor from this, when a character becomes an ISS astronaut, yet is still a nobody on his return to Earth.

If you yearn for a bit of that excitement from the Space Race days you may just find it in another story tucked away in the tech sections, though it comes from a collaboration rather than a competition. NASA and the Russian space agency Roscosmos have announced a partnership to take what will be the next step towards a future of deep space exploration, to place a manned space station in a Lunar orbit. The idea is that it would serve first as a valuable research platform for missions in deeper space than the current relatively low orbit of the ISS, and then as a launch base for both lunar missions and those further afield in the Solar System.

Of course, there is no lunar-orbiting station, yet. There is a long and inglorious history of proposed space missions that never left the drawing board, and this one may yet prove to be the next addition to it. But what are real are the two indisputable facts, that NASA and Roscosmos have inked this partnership, and eventually there will have to be a replacement for the ISS. This project stands a good chance of being that replacement, which makes it of great interest to anyone with an interest in technology. It’s a little out of the world of usual Hackaday fodder, but if you are like us you will want to believe that one day it will be launched.

Even with a lunar orbiting space station, it will be a very long time indeed before we see manned missions going significantly further into the Solar system. Perhaps another approach is required to go further, a laser-driven silicon wafer aimed at a nearby star.

Moon image: 阿爾特斯 [CC BY-SA 3.0].