Arduino Rig Does Spectrophotometry

Spectrophotometry is an important scientific tool, most commonly used in biology and chemistry. It’s a method to measure the amount of light absorbed by a chemical solution at various different wavelengths. While it’s typically the preserve of expensive lab equipment, [Daniel Hingston] built a rig to do the job at home.

The heart of the rig is a normal filament-based flashlight bulb, which produces good-quality white light containing all colors. A prism is then used to split the light into its component wavelengths, so that the sample can be tested across the whole light spectrum. The prism is rotated by a servo motor, which exposes the sample to the full rainbow, while an Arduino uses a light-dependent resistor to measure how much light makes it through the sample. Thus, the amount of light absorbed by the sample can be calculated, relative to calibrations made with no sample present.

It’s a simple build that can be achieved with fairly common materials, barring the prism which may need to be specially ordered. It would be a great way to teach highschool students about advanced scientific concepts, as well as showing them behind the curtain of how lab equipment works.

We see all kinds of DIY science gear around here; this lantern-based bioreactor is a great example. Video after the break.

Continue reading “Arduino Rig Does Spectrophotometry”

Fitness Tracker Hacked Into Optical Density Meter

What do fitness trackers have to do with bacterial cultures in the lab? Absolutely nothing, unless and until someone turns a fitness band into a general-purpose optical densitometer for the lab.

This is one of those stories that shows that you never know from where inspiration is going to come. [Chinna Devarapu] learned that as a result of playing around with cheap fitness bands, specifically an ID107HR. A community has built up around hacking these bands; we featured a similar band that was turned into an EEG. With some help, [Chinna] was able to reflash the microcontroller and program it in the Arduino IDE, and began looking for a mission for the sensor-laden platform.

He settled on building a continuous optical densitometer for his biology colleagues. Bacterial cultures become increasingly turbid as the grow, and measuring the optical density (OD) of a culture is a common way to monitor its growth phase. This is usually done by sucking up a bit of the culture to measure, but [Chinna] and his team were able to use the hacked fitness band’s heartrate sensor to measure the OD on the fly. The tracker fits in a 3D-printed holder where an LED can shine through the growing culture; the sensor’s photodiode measures the amount of light getting through and the raw data is available via the tracker’s Bluetooth. The whole thing can be built for less than $20, and the plans have been completely open-sourced.

We really like the idea of turning these fitness bands into something completely different. With the capabilities these things pack into such a cheap and compact package, they should start turning up in more and more projects.

Spot Adulterated Olive Oil With This Spectrophotometer

Olive oil at its finest quality is a product that brings alive the Mediterranean cuisine of which it is a staple. Unfortunately for many of us not fortunate enough to possess our own olive grove, commercial olive oils are frequently adulterated, diluted with cheaper oils such as canola. As consumers we have no way of knowing this, other than the taste being a bit less pronounced. Food standards agencies use spectrophotometers to check the purity of oils, and [Daniel James Evans] has created such a device using a Raspberry Pi.

A spectrophotometer shines white light through a sample to be tested, splits the light up into a spectrum with a prism or diffraction grating, and measures the light level at each point in the spectrum to gain a spectral profile of the sample. Different samples can then be compared by overlaying their profiles and looking at any differences. This build shines the light from an LED through a sample of oil, splits the result with a diffraction grating, and captures the spectrum with a Raspberry Pi camera. Commercial instruments are usually calibrated by co-incidentally sampling a pure sample of the same solvent the test subject is dissolved in, in this case the calibration is done against a sample of pure olive oil. The software requires the user to identify the spectrum in the resulting photograph, before generating a curve.

From a basis of having worked with and maintained spectrophotometers in the distant past we would have expected to see an incandescent bulb rather than an LED for a flatter response, but since this is an oil identifier rather than a finely calibrated laboratory instrument this is probably less of an issue.

Over the years we’ve had quite a few spectrophotometer projects here, this Hackaday Prize entry from 2016 is just one of many.

Scrap Bin Mods Move Science Forward

A first-time visitor to any bio or chem lab will have many wonders to behold, but few as captivating as the magnetic stirrer. A motor turns a magnet which in turn spins a Teflon-coated stir bar inside the beaker that sits on top. It’s brilliantly simple and so incredibly useful that it leaves one wondering why they’re not included as standard equipment in every kitchen range.

But as ubiquitous as magnetic stirrers are in the lab, they generally come in largish packages. [BantamBasher135] needed a much smaller stir plate to fit inside a spectrophotometer. With zero budget, he retrofitted the instrument with an e-waste, Arduino-controlled magnetic stirrer.

The footprint available for the modification was exceedingly small — a 1 cm square cuvette with a flea-sized micro stir bar. His first stab at the micro-stirrer used a tiny 5-volt laptop fan with the blades cut off and a magnet glued to the hub, but that proved problematic. Later improvements included beefing up the voltage feeding the fan and coming up with a non-standard PWM scheme to turn the motor slow enough to prevent decoupling the stir bar from the magnets.

[BantamBasher135] admits that it’s an ugly solution, but one does what one can to get the science done. While this is a bit specialized, we’ve featured plenty of DIY lab instruments here before. You can make your own peristaltic pump or even a spectrophotometer — with or without the stirrer.

Continue reading “Scrap Bin Mods Move Science Forward”

Hackaday Prize Entry: A Simple Spectrophotometer

Building on the work of other Citizen Science efforts, [doctek]’s entry for the Hackaday Prize promises to detect pollution, identify chemicals, and perform other analyses with a simple handheld device. It’s a spectrophotometer, and [doctek] is putting some real engineering into this build.

A spectrophotometer is one of the simplest devices able to perform spectroscopy, requiring only a light source, a photoresistor, and some means of producing monochromatic light. By putting a sample in front of the photoresistor, the absorption spectrum of the sample can be measured. With this data, it’s a simple matter to identify the sample.

A light and a photoresistor are simple enough, but as with every precision measurement device, the devil is in the details. [doctec] is using new, low-noise, low-offset opamps, and precision references to get his data. Some of the parts in the schematic were actually designed in this century – a far cry from the ‘plug the photoresistor into the analog input’ projects we see so often.

[doctec] is using a Teensy 3.0 to drive the electronics and collect the data, and he already has the mechanics of this build pretty much figured out. It’s a great project that shows off some engineering skill, making it a great entry for The Hackaday Prize.

Basic Toolkit For The Basement Biohacker

Laying hands on the supplies for most hacks we cover is getting easier by the day. A few pecks at the keyboard and half a dozen boards or chips are on an ePacket from China to your doorstep for next to nothing. But if hacking life is what you’re into, you’ll spend a lot of time and money gathering the necessary instrumentation. Unless you roll your own mini genetic engineering lab from scratch, that is.

arduino-based-biolab-data-logger-thumbTaking the form of an Arduino mega-shield that supports a pH meter, a spectrophotometer, and a PID-controlled hot plate, [M. Bindhammer]’s design has a nice cross-section of the instruments needed to start biohacking in your basement. Since the shield piggybacks on an Arduino, all the data can be logged, and decisions can be made based on the data as it is collected. One example is changing the temperature of the hot plate when a certain pH is reached. Not having to babysit your experiments could be a huge boon to the basement biohacker.

Biohacking is poised to be the next big thing in the hacking movement, and [M. Bindhammer]’s design is far from the only player in the space. From incubators to peristaltic pumps to complete labs in a box, the tools to tweak life are starting to reach critical mass. We can’t wait to see where these tools lead.

Retrotechtacular: Turn On The Magic Of Colored Light

title cardChances are, you take color for granted. Whether or not you give it much thought, color is key to distinguishing your surroundings. It helps you identify fire, brown recluse spiders, and the right resistor for the job.

In the spotlight this week is a 1950s educational film called “This is Color“. It also happens to be a delightful time capsule of consumer packaging from the atomic age. This film was made by the Interchemical Corporation, an industrial research lab and manufacturer of printing inks. As the narrator explains, consistent replication of pigments is an essential part of mass production. In order to conjure a particular pigment in the first place, one must first understand the nature of color and the physical properties of visible light.

electromagnetic spectrumEach color that makes up the spectrum of visible rays has a particular wavelength. The five principal colors—red, yellow, green, blue, and violet—make possible thousands of shades and hues, but are only a small slice of the electromagnetic spectrum.

When light encounters a transparent material more dense than air, such as water or glass, it has to change direction and is bent by the surface. This is known as refraction. A straw placed in a glass of water will appear bent below the surface because the air and the water have different refractive indices. That is, the air and water will bend or refract different percentages of the light that permeates them. Continue reading “Retrotechtacular: Turn On The Magic Of Colored Light”