The Lost Art Of Steam Heating

We got pointed by [packrat] to a 2015 presentation by [Dan Holohan] on the history and art of steam heating systems. At the advent of central heating systems for entire buildings, steam was used instead of water or air for the transport medium. These systems were installed in landmark buildings including the Empire State Building, which still use them to this day.

A major advantage of steam-based heating system is that no pump is required: the steam will naturally rise up through the piping, condenses and returns to the origin. This can be implemented as a single pipe where condensation returns through the same pipe as the steam, or a two-pipe system where the condensate returns through its own pipe.

In the presentation, Dan walks us through his experiences working on many of these steam heating systems in major US buildings, the types of systems, fixes implemented by engineers long since dead and the particularities of maintaining these systems.

Continue reading “The Lost Art Of Steam Heating”

This Xbox 360 Is Powered By Steam

Now that we’re far enough into the next generation of home video game consoles that we can’t really keep calling them that anymore, yard sales are sure to be full of lonely Xbox 360s and PS3s that have been put out to pasture. You’ll probably even find a Wii U or two out there that somebody accidentally purchased. This is great for hackers who like cramming new electronics into outdated consumer gear, and accordingly, we’re starting to see the fruits of that generational shift.

Case in point, this Xbox 360 which has been transformed into a “Steam Box” by [Pedro Mateus]. He figured the Xbox 360 was the proper size to fit a full PC plus PSU, while still looking contemporary enough that it won’t seem out of place in the entertainment center. Running SteamOS on Fedora 28, it even offers a traditional game console experience and user interface, despite the decidedly PC internals.

On the outside, the only thing that really gives away this particular Xbox’s new lease on life (when the purple LEDs are off, anyway) is the laser cut acrylic Steam logo on the top that serves as a grill for the internal CPU cooler. Ironically, [Pedro] did spray the Xbox white instead of just starting with a black one, but otherwise, there wasn’t much external modification necessary. Inside, of course, is a very different story.

It’s packing an AMD Ryzen 5 2400G processor with Radeon RX Vega 11GPU and 8GB of Corsair Vengeance LPX DDR4 3200MHz RAM. Power is provided by a Seasonic SS-300TFX 300W, and a Noctua NH-L9a-AM4 keeps the system cool. Even with all that gear in there, the thing is probably still quieter than the stock Xbox 360.

[Pedro] helpfully provides quite a few benchmarks for those wondering how this hacked-up Xbox fares against a more traditional gaming setup, though peak performance was obviously not the goal here. If you’ve got 45 minutes or so to spare, you should check out the video he’s put together after the break, which goes over the machine’s construction.

We’ve seen it done with the original Xbox, and now the Xbox 360. Who will be the first to send in their build that guts a current-generation Xbox and turns it into a PC for Internet fame?

[Thanks to Mike for the tip.]

Continue reading “This Xbox 360 Is Powered By Steam”

Hackaday Links Column Banner

Hackaday Links: July 1, 2018

Remember when computer mice didn’t have scroll wheels? The greatest mouse of all time, the Microsoft Intellimouse Explorer 3.0, is back in production. This mouse was released in 2003, before the popularity of ‘gaming’ mice from the likes of Razer, and at the time it was the standard mouse for RTS and FPS professional gamers. After producing a few million of these mice, the molds died or the sensors were out of stock, Microsoft stopped shipping the Intellimouse Explorer 3.0, and the ones that were out in the wild slowly died. Now this fantastic mouse is back, and it’s only going to set you back $40. Believe me when I say this is one of the greatest user interface devices ever created, right up there with the Model M keyboard.

Another week, another update on building an airplane in a basement. [Peter Sripol] has basically finished the fuselage of his homebuilt ultralight with working elevator, rudder, and landing gear that looks like it might hold up.

The Pebble was one of the most successful crowdfunding campaigns ever, and now it’s dead. Pebble was bought by Fitbit for $40M, and now the Pebble servers are off, as of June 30th. Of course there are community-based projects to keep the Pebble working, notably the rebble project.

It’s time for Steam’s summer sale, and your wallet is crying. The standout deal is the Steam Link, a sort of ‘thin client for Steam’ that plugs into your TV, looks on the network for your battlestation, and allows you to play Fortnite or whatever on the big screen. The Steam Link normally sells for $50, but with the summer sale it’s two dollars and fifty cents.

Here are a few experiments in CNC joinery. [Mirock] has a CNC machine and a few pieces of wood, and explored what is possible when you want to join two boards at ninety degrees to each other. Why is this interesting? One of the joints on this simple box project consists of a circle with a hole on one board, and a pin on the other. This is basically a Knapp joint, a ‘dovetail’ of sorts that was developed in the 1860s. This was the first popular machine-made joint in woodworking, and if you ever see it on an antique, it solidly dates that piece to any time between 1870-1900. Of course, now that you can just buy a CNC router, an infinite variety of joints are possible, and [Mirock] can experiment with all sorts of combinations of pins and tails and mortises and tenons.

Make A Steam Cleaner From A Broken Clothes Iron

As the old saying goes, when life gives you a broken iron, make a steam cleaner. Or something like that. Anyway, [Claudio] from [Accidental Science] had a clothes iron with a broken head that he decided to adapt into a steam blower that can be used to clean PCBs, glassware, degreasing parts or cleaning stains off the couch.

[Claudio] covers everything from tearing down the broken iron to crafting a new tip that avoids problems with water droplets condensing on the brass tip that he used first. After salvaging the switch in the head that controls the steam, he carved a wooden handle that is soaked and coated with high-temperature resin. The hot end was then reinstalled, and the whole thing put together.

This build should be approached with some caution, though: anything that mixes high-pressure steam with electricity has the potential to go wrong in unpleasant ways, so be careful out there.

Continue reading “Make A Steam Cleaner From A Broken Clothes Iron”

Smell That? It’s Time.

Steampunk is beautiful. There is something about the exposed metal and primitive looking artifacts that visually appeal to the brain of a maker and engineer alike. Makers have been busy the last decade building clocks with this theme because hey, everyone needs a clock. [Fuselage] has put together a Steam Punk Clock that releases actual steam(actually steam oil smoke) for its hourly chime. How cool is that?

The clock is designed around the Conrad C-Control Unit (translated) which has the Motorola 68HC08 and [Fuselage] uses BASIC to write the routines for the system. Unlike a lot of steampunk clocks that use Nixie Tubes, this one uses 4 Numitron displays for the hours and minutes display. An analog dial panel display is employed for the seconds’ and is driven by a PWM signal. The absence of the RTC module was not obvious until we saw that the BOM includes a DCF77 receiver. For the uninitiated, DCF77 is a longwave time signal and standard-frequency radio station in Mainflingen, Germany. If you are anywhere within a 2000 km range of that location, you can pick up a 24-hr time signal for free which is excellent if you plan to make say… a radio clock.

The steam/smoke generator is a subproject of sorts. The custom machine is designed to have a separate oil reservoir and pump in addition to the actual generator so that the system does not run out of fuel as quickly. Clearly [Fuselage] did his homework which is explained in brief in his project logs. The final design has a brass tube as the main heating and also serves as the outlet chamber. The oil is pumped from under the heating filament in the brass tube, and excess fluid drains off back into the reservoir. A piece of nichrome wire serves as the filament that vaporizes the liquid to gaseous form. Sensors make sure of the oil levels in the reservoir as well as the steam tube. Servo motors and fans add the effect of the opening the exhaust rain cap, and a small LED helps illuminate the exhaust to complete the impression of real steam.

The project is a great example of a simple but effective implementation and for those who are wondering about Numitron Tubes, check out this tutorial on the subject. Of course, there is the Giant Electro-mechanical Clock for those looking at more sizable works of art.

Continue reading “Smell That? It’s Time.”

Teaching STEAM With Fidget Spinners

A huge focus of the maker revolution has been a focus on STEAM education, or rather an education in science, technology, engineering, art, and mathematics. We’ve seen innumerable kits and tools designed to introduce children to STEAM apps, ranging from electronic Lego blocks to robotics kits built around interlocking plastic bricks. These are just a passing fad, but finally, we have what looks like a winner: a STEAM education fidget spinner.

Fidget spinners have spun into our hearts like a shuriken over the last few months, and [MakerStorage]’s latest project taps into the popularity of fidget spinners to put an educational — wait for it — spin on the usual STEAM education toolkit. This is exactly what the maker revolution needs.

On board this educational fidget spinner are a few RGB LEDs and an Arduino-compatible microcontroller development board. A coin cell battery powers everything, and in an interesting advancement of fidget spinner science, [MakerStorage] seems to be using a flanged bearing with a PCB. We’re seeing the march of technology right before our eyes, people. Right now there are two versions of the educational fidget spinner, one with an Arduino Pro Micro soldered to the board, and another with an ATMega-derived custom circuit on the board along with a PCB USB connector.

Haven’t gotten enough fidget spinner news? OH BOY does Hackaday have you covered. Here’s the Internet of Fidget Spinners, a fidget spinner with an embedded WiFi microcontroller and a bunch of blinky LEDs. Those LEDs form a Persistence of Vision display. It’s amazing, astonishing, and it’s in fidget spinner format. Bored with your oscilloscope? Turn it into a fidget spinner tachometer. There’s literally nothing that can’t be applied to the world of fidget spinners.

Sony Unveils Swarm Robots For Kids

Sony recently unveiled Toio, an educational robotics toy for young programmers. We all know Sony as an electronics giant, but they do dabble in robotics from time to time. The AIBO dog family is probably their most famous creation, though there is also QRIO, a bipedal humanoid, and on the stranger side, the Rolly.

Toio consists of two small cube robots which roll around the desktop. You can control them with handheld rings, or run programs on them. The robots are charged by a base station, which also has a cartridge slot. Sony is marketing this as an ecosystem that can be expanded by buying packs which consist of accessories and a software cartridge. It looks like the cartridge is yet another proprietary memory card format. Is Sony ever going to learn?

There isn’t much hard information on Toio yet. We know it will be released in Japan on December 1st and will cost around ¥ 20,000, or about 200 USD. No word yet on a worldwide release.

The striking thing about this kit is how well the two robots know each other’s position. Tape a paper pair of pants, and they “walk” like two feet. Attach a paper linkage between them, and they turn in perfect sync, like two gears. Add some paper strips, and the two robots work together to form a gripper.  We can only guess that Sony is using cameras on the bottom of each robot to determine position — possibly with the aid of an encoded work surface — similar to Anoto paper. Whatever technology it is, here’s to hoping Sony puts out an SDK for researchers and hackers to get in on the fun with these little robots.

Continue reading “Sony Unveils Swarm Robots For Kids”