Synthetic Biology Creates Living Computers

Most people have at least a fuzzy idea of what DNA is. Ask about RNA, though, and unless you are talking to a biologist, you are likely to get even more handwaving. We hackers might have to reread our biology text books, though, since researchers have built logic gates using RNA.

Sometimes we read these university press releases and realize that the result isn’t very practical. But in this case, the Arizona State University study shows how AND, OR, and NOT gates are possible and shows practical applications with four-input AND gates and six-input OR gates using living cells. The key is a construct known as an RNA toehold switch (see video below). Although this was worked out in 2012, this recent study shows how to apply it practically.

Continue reading “Synthetic Biology Creates Living Computers”

Quick Robin! The Bat Keychain!

We don’t know if Batman has a keychain for the keys to the Bat mobile, the Bat copter, and all his other vehicles. But we are guessing if he did, it didn’t look like the one [krishnan793] picked up cheap. It had a little button that lit up some LEDs and played a little tune. [Krishnan] thought he could do better with an ESP8266. After chopping up some headphones and adding a LiPo battery, he wound up with an improved key chain you can see in the video below. The first video is the before video. The second is after the modification. Sure, it is only a small improvement on LEDs and a simple tune, but now it is hackable to do more interesting things if you want to take the trouble to do so.

Continue reading “Quick Robin! The Bat Keychain!”

Silicone Molds for Stove-Top Metal Casting

Casting metal parts from 3D-printed plastic or Styrofoam models is all the rage these days, and for good reason — casting is a way to turn one-offs into mass-produced parts. Seems like most of the metal casting projects we feature are aluminum in sand molds, though, so it’s refreshing to see a casting project using silicone molds to cast low-melting point metals.

Don’t get us wrong — sand-cast aluminum is a great method that can even be used to build a lathe from scratch. But not everyone wants to build a foundry and learn the sometimes fussy craft of creating sand molds. [Chris Deprisco] wanted to explore low-melting point bismuth alloys and set about making silicone rubber molds of a 3D-printed Maltese falcon. The bismuth-tin alloy, sold as a substitute for casting lead fishing weights, melts on at 281°F (138°C) and is cool enough for the mold to handle. Initial problems with bubbles in the cast led to a pressure vessel fix, and a dull, grainy surface was fixed by warming the mold before the pour. And unlike sand molds, silicone molds are reusable.

Of course if aluminum is still your material of choice, there’s no need for a complicated foundry. A tuna can, a loaf of bread, and a handful of play sand is all you need to make custom parts.

Continue reading “Silicone Molds for Stove-Top Metal Casting”

The Hackaday Prize: Exoskeletons for the Masses

While medical facilities continue to improve worldwide, access to expensive treatments still eludes a vast amount of people. Especially when it comes to prosthetics, a lot of people won’t be able to afford something so personalized even though the need for assistive devices is extremely high. With that in mind, [Guillermo Herrera-Arcos] started working on ALICE, a robotic exoskeleton that is low-cost, easy to build, and as an added bonus, 100% Open Source.

ALICE’s creators envision that the exoskeleton will have applications in rehabilitation, human augmentation, and even gaming. Also, since it’s Open Source, it could also be used as a platform for STEM students to learn from. Currently, the team is testing electronics in the legs of the exoskeleton, but they have already come a long way with their control system and getting a workable prototype in place. Moving into the future, the creators, as well as anyone else who develops something on this platform, will always be improving it and building upon it thanks to the nature of Open Source hardware.

Friday Hack Chat: Crypto Challenge

It’s the middle of August, and that means all the hackers are back from DEF CON, safe in their hoodies, with memories of smoke-filled casinos, interesting talks, and, most importantly, crypto challenges.

This year was an ‘off’ year for DEF CON. There was an official badge, but it wasn’t electronic (which no one expected), and there was no crypto challenge (which no one saw coming). Nevertheless, there was already a vibrant community of badge builders, and the crypto nerds of DEF CON were satisfied by PCB locks from the Crypto and Privacy village, Benders, and Darknet phone dials this year.

How were these crypto challenges constructed? That’s the subject of this week’s Hack Chat. This Friday, we’re going to be sitting down with a member of DEF CON’s Crypto and Privacy village on how these curious codes are constructed, how a winner is determined, and the techniques used to solve these challenges.

This week, we’ll be talking about how crypto challenges actually work, how to put crypto in firmware, on laser-engraved acrylic plates, and in silkscreen on a PCB. We’ll be talking about how crypto challenges are created, and how you solve them. Special attention will be paid to testing a crypto challenge; that is, how do you make sure it’s solvable when you already know how to solve it?

Although this Hack Chat is only going to last an hour, there’s no possible way we could cover all the tips, tricks, and techniques of creating a crypto challenge in that time. If you’d like some further reading, [L0sT] showed up at our 10th anniversary party to tell us he created the puzzles for DEF CON over the last few years.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This Hack Chat will take place at noon Pacific time on Friday, August 11th. Don’t know when the Earth’s sun will be directly overhead? Here’s a time and date converter!

Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Retrotechtacular: The Bell Laboratory Science Series

For those of a certain vintage, no better day at school could be had than the days when the teacher decided to take it easy and put on a film. The familiar green-blue Bell+Howell 16mm projector in the center of the classroom, the dimmed lights, the chance to spend an hour doing something other than the normal drudgery — it all contributed to a palpable excitement, no matter what the content on that reel of film.

But the best days of all (at least for me) were when one of the Bell Laboratory Science Series films was queued up. The films may look a bit schlocky to the 21st-century eye, but they were groundbreaking at the time. Produced as TV specials to be aired during the “family hour,” each film is a combination of live-action for the grown-ups and animation for the kiddies that covers a specific scientific topic ranging from solar physics with the series premiere Our Mr. Sun to human psychology in Gateways to the Mind. The series even took a stab at explaining genetics with Thread of Life in 1960, an ambitious effort given that Watson and Crick had only published their model of DNA in 1953 and were still two years shy of their Nobel Prize.

Produced between 1956 and 1964, the series enlisted some really big Hollywood names. Frank Capra, director of Christmas staple It’s a Wonderful Life, helmed the first four films. The series featured exposition by “Dr. Research,” played by Dr. Frank Baxter, an English professor. His sidekick was usually referred to as “Mr. Fiction Writer” and first played by Eddie Albert of Green Acres fame. A list of voice actors and animators for the series reads like a who’s who of the golden age of animation: Daws Butler, Hans Conried, Sterling Halloway, Chuck Jones, Maurice Noble, Bob McKimson, Friz Freleng, and queen and king themselves, June Foray and Mel Blanc. Later films were produced by Warner Brothers and Walt Disney Studios, with Disney starring in the final film. The combined star power really helped propel the films and help Bell Labs deliver their message.

Continue reading “Retrotechtacular: The Bell Laboratory Science Series”

New Release Makes EAGLE and Fusion 360 Besties

The latest release of EAGLE builds a bridge between mechanical design and electronic design. Version 8.3 rolls in the ability to synchronize between EAGLE and Fusion 360. You can now jump between mechanical design and PCB layout without the need for extra steps in between. This is the first release of EAGLE that highlights what the Autodesk purchase actually means.

Just over a year ago, Autodesk bought EagleCAD which is one of the more popular PCB design suites for students, electronic hobbyists, and Open Hardware engineers. While there were some questions about the new license structure of EAGLE under the Autodesk banner, there was a promise of a faster development schedule and the possibility for integration of EAGLE with Autodesk’s CAD programs. Now it’s finally time for EAGLE and Fusion 360 to become besties.

The EAGLE and Fusion 360 integration update includes an online library editor with managed libraries. These online libraries are the ‘cloud’ solution to a folder full of custom EAGLE libraries filled with parts. These libraries package 3D models with the EAGLE libraries, simplifying mechanical design. You can place components on your PCB, then pull that layout into Fusion 360 to see how the board will work with your enclosure. Component placements that collide with the enclosure can be adjusted in Fusion before jumping back to EAGLE to fix the routing.

Embedded passive designs. The resistors *are* the PCB.

There are a few other interesting items in the release notes for EAGLE 8.3. At the top of the list is a new ‘board shape’ object. This is more than just a milling layer for a board outline — the board shape object can now be checked with DRC to ensure components aren’t too close to an edge. This also allows for new features like customizable cutouts and embedded passive designs, or putting resistors and caps in the layers of a PCB instead of placing them as discrete components.

With this release, there is a new Single Layer Mode. This mode only highlights the active layer of the PCB, leaving all other layers grayed out. To be honest, this feature should have been in EAGLE ten years ago, but late is better than never.

For the last year, those of us not complaining about the new EAGLE licensing situation have been watching the updates to EAGLE creep out of Autodesk. There has been a lot of speculation on what Autodesk would bring to the table when it comes to electronic design. This is it. It looks like Autodesk is fulfilling their promise to integrate electronic and mechanical design. The latest EAGLE release looks great, especially with the addition of walk-around routing and something resembling push and shove traces added earlier this year, combined with this update for the mechanical side of design projects.

You can check out a promo video from Autodesk of the new EAGLE release below.

Continue reading “New Release Makes EAGLE and Fusion 360 Besties”