Improved Hydrogen Fuel Cells Are Groovy

According to [Charles Q. Choi], a new study indicates that grooves in the hydrogen fuel cells used to power vehicles can improve their performance by up to 50%. Fuel cells are like batteries because they use chemical reactions to create electricity. Where they are different is that a battery reacts a certain amount of material, and then it is done unless you recharge it somehow. A fuel cell will use as much fuel as you give it. That allows it to continue creating electricity until the fuel runs out.

Common hydrogen fuel cells use a proton exchange membrane — a polymer membrane that conducts protons to separate the fuel and the oxidizer. You can think of it as an electrolyte. Common fuel cells use an electrode design that hasn’t changed in decades. The new research has catalyst ridges separated by empty grooves. This enhances oxygen flow and proton transport.

Conventional electrodes use an ion-conducting polymer and a platinum catalyst. Adding more polymer improves proton transport but inhibits oxygen flow. The grooved design allows for dense polymer on the ridges but allows oxygen to flow in the grooves. In technical terms, the proton transport resistance goes down, and there is little change in the oxygen transport resistance.

The grooves are between one and two nanometers wide, so don’t pull out your CNC mill. The researchers admit they had the idea for this some time ago, but it has taken several years to figure out how to fabricate the special electrodes.

Drone Flies For Five Hours With Hydrogen Fuel Cell

Multirotor drones have become a regular part of daily life, serving as everything from camera platforms to inspection tools and weapons of war. The vast majority run on lithium rechargeable batteries, with corresponding limits on flight time. A company called Hylium hopes to change all that with a hydrogen-powered drone that can fly for up to five hours.

The drone uses a hydrogen fuel cell to provide electricity to run the drone’s motors and other electronic systems. Thanks to the energy density advantage of hydrogen versus lithium batteries, the flight time can be greatly extended compared to conventional battery-only drones. Details are scant, but the company has gone to some lengths to build out the product beyond a simple tech demonstrator, too. Hylium touts useful features like the short five-minute refueling time. The drone also reportedly features a night vision camera and the capability to transmit video over distances up to 10 kilometers, though some of the video of these features appears to be stock footage.

Hylium claims the liquid hydrogen canister used for the drone is drop-safe in the event of a problem. Notably, the video suggests the company tested this by dropping the canister concerningly close to an active motorway, but from what we see, nothing went awry.

A drone that can fly for five hours would be particularly useful for autonomous surveillance and inspection roles. The additional loiter time would be advantageous in these roles. We’ve seen other aero experimenters exploring the use of hydrogen fuel cells, too.

Continue reading “Drone Flies For Five Hours With Hydrogen Fuel Cell”

Largest Ever Hydrogen Fuel Cell Plane Takes Flight

In the automotive world, batteries are quickly becoming the energy source of the future. For heavier-duty tasks, though, they simply don’t cut the mustard. Their energy density, being a small fraction of that of liquid fuels, just can’t get the job done. In areas like these, hydrogen holds some promise as a cleaner fuel of the future.

Universal Hydrogen hopes that hydrogen will do for aviation what batteries can’t. The company has been developing flight-ready fuel cells for this exact purpose, and has begun test flights towards that very goal.

Continue reading “Largest Ever Hydrogen Fuel Cell Plane Takes Flight”

Hyundai To Lead US Market For Hydrogen Fuel Cell Trucks

Hydrogen has long been touted as a potential fuel of the future. While it’s failed to catch on in cars as batteries have taken a strong lead, it still holds great promise for larger vehicles like trucks.

Hyundai have been working diligently in this space over the last few years, with its Xcient line of fuel-cell powered trucks. It’s set to dominate the world of hydrogen trucking in the US as it brings a fleet of vehicles to California next year.

Continue reading “Hyundai To Lead US Market For Hydrogen Fuel Cell Trucks”

Reducing The Risk Of Flying With Hydrogen Fuels

Flight shaming is the hot new thing where people who take more than a handful of trips on an airplane per year are ridiculed for the environmental impact of their travels. It’s one strategy for making flying more sustainable, but it’s simply not viable for ultimately reducing the carbon impact that the airline industries have on the environment.

Electric planes are an interesting place to look for answers. Though carbon-free long haul travel is possible, it’s not a reality for most situations in which people travel today. Current battery technology can’t get anywhere near the energy density of fossil fuels and larger batteries aren’t an option since every pound matters when designing aircraft.

Even with land travel and electric grids improving in their use of renewables and electric power, aviation tends to be difficult to power with anything other than hydrocarbons. Student engineers in the AeroDelft program in the Netherlands have created Project Phoenix to develop an aircraft powered by a liquid hydrogen fuel cell, producing a primary emission of water vapor. So it is an electric plane, but leverages the energy density of hydrocarbons to get around the battery weight problem.

While the project may seem like an enormous reach peppered with potential safety hazards, redundant safety features are used such as sensors and vents in case of a hydrogen leakage, as well as an electric battery in case of failure. Hydrogen produced three times more energy per unit than kerosene, but is six times the volume in gas form and requires cumbersome compression tanks.

Even though hydrogen fuel only produces water vapor as a byproduct, it can still cause greenhouse effects if it is released too high and creates clouds. The team is exploring storage tanks for slow release of the water vapor at more optimal altitudes. On top of that, most hydrogen is produced using steam methane reforming (SMR), creating up to 150g of greenhouse gases per kWh, and electrolysis tends to be more costly and rarely carbon neutral. Alternatives such as solar power, biofuels, and electric power are looking to make headwind as well, but the technology is still far from perfected.

While it’s difficult to predict the success of the project so early on, the idea of reducing risk in hydrogen fuels may not be limited to a handful of companies for very long.

Continue reading “Reducing The Risk Of Flying With Hydrogen Fuels”

A Hydrogen Fuel Cell Drone

When we think about hydrogen and flying machines, it’s quite common to imagine Zeppelins, weather balloons and similar uses of hydrogen in lighter-than-air craft to lift stuff of the ground. But with smaller and more efficient fuel cells, hydrogen is gaining its place in the drone field. Project RACHEL is a hydrogen powered drone project that involves multiple companies and has now surpassed the 60 minutes of flight milestone.

The initial target of the project was to achieve 60 minutes of continuous flight while carrying a 5 kg payload. The Lithium Polymer battery-powered UAVs flown by BATCAM allow around 12 minutes of useable flight. The recent test of the purpose-built fuel cell powered UAV saw it fly for an uninterrupted 70 minutes carrying a 5 kg payload.  This was achieved on a UAV with below 20 kg maximum take-off mass, using a 6-litre cylinder containing hydrogen gas compressed to 300 bar.

While this is not world record for drones and it’s not exactly clear if there will be a commercial product nor the price tag, it is still an impressive feat for a fuel cell powered flying device. You can watch the footage of one of their tests bellow:

Continue reading “A Hydrogen Fuel Cell Drone”

Aluminium Pucks Fuel Hydrogen Trucks

In the race toward a future free from fossil fuels, hydrogen is rapidly gaining ground. On paper, hydrogen sounds fantastic — it’s clean-burning with zero emissions, the refuel time is much faster than electric, and hydrogen-fueled vehicles can go longer distances between refuels than their outlet-dependent brethren.

The reality is that hydrogen vehicles usually need fuel cells to convert hydrogen and oxygen into electricity. They also need pressurized tanks to store the gases and pumps for refueling, all of which adds weight, takes up space, and increases the explosive potential of the system.

Kurt Koehler has a better idea: make the hydrogen on demand, in the vehicle, using a solid catalyst and a simple chemical reaction. Koehler is the founder of Indiana-based startup AlGalCo — Aluminium Gallium Company. After fourteen years of R&D and five iterations of his system, the idea is really starting to float. Beginning this summer, these pucks are going to power a few trucks in a town just outside of Indianapolis.

Continue reading “Aluminium Pucks Fuel Hydrogen Trucks”