Trinket Everyday Carry Contest Drawing #1 Results

We just had our first drawing for the Trinket Everyday Carry Contest. Thanks to a little help from random.org, the winner is [Korishev] with his project Trinket Timer!

korishev-trinket-timer[Korishev] finds that family life calls for a lot of timed events, from how long the kids spend on their homework to keeping the peace by sharing toys. The plan is to build at least a one timer for each child that they will be able to carry around and use as needed. We hope he gets them in on the build to help sow the seeds of hardware development at a young age.

trinket-prize-blink1As the winner of the first drawing [Korishev] will receive this beautiful BLINK(1) MK2 from The Hackaday Store. The USB dongle houses a programmable RGB LED. We wonder if this will also be applied as an additional timer for the household?

If you didn’t win this week, don’t worry, there are still four more chances to win a random drawing! Our next drawing will be on 12/9/2014 at 9pm EST with the Cordwood Puzzle as a prize. To be eligible you need to submit your project as an official entry and publish at least one project log during the week.

The deadline for the main contest is January 2, 2014! There are just over 40 entries right now, and the top 50 will receive custom t-shirts. Of course the three top prizes are the real juicy ones. Let’s get those pocketable projects going!

Trinket Everyday Carry Contest Roundup: Sniffing Trinket and Portable Trollmaster 3000!

Hackaday’s  Trinket Everyday Carry Contest is heating up. In just one week we’ve already got over 30 entries! Many of the contenders are completely new open source projects based on the Pro Trinket. Our first drawing will be tonight, at 9pm EST. The first giveaway prize is a BLINK(1) MK2 from the Hackaday store. Make sure you have at least one project log and a photo up to be eligible for this week’s giveaway!

sniffingtrinketWe can’t help but mention how awesome some of the entries are.  [Georg Krocker] is taking on the problem of indoor air quality – not with a central sensor, but with a personal sensor that goes where you do. Sniffing Trinket is designed to monitor the air around the user. If the air quality drops, it will alert the user to open a window – or get the heck out. [Georg] has a few sensors in mind, but he’s starting with the MQ135 gas sensor and a DHT11 temperature/humidity sensor. If air quality starts to drop, 3 WS2812b LEDs will alert the user that there is a problem. The system can also be connected to a PC with USB for more accurate readings and logging.

[Georg] has an aggressive schedule planned, with a custom “Trinket Shield” PCB being laid out and ordered next week. January 2 is fast approaching, so hurry up and get those boards designed!

trololo[Dr Salica] is taking a more humorous approach to personal space. The Portable Trollmaster 3000 is designed to surround its wearer in a bubble of  “I Am Glad, ‘Cause I’m Finally Returning Back Home” aka “The Trololol song” as sung by Eduard Khil. [Dr Salica] plans to pair the Pro Trinket with the popular Sony MMR-70 FM transmitter. The Trinket is capable of playing back short audio clips, so with a bit of I2C magic, [Dr. Salica] will be able to hijack any nearby FM receiver, creating his own personal trollbox.

Do you have an idea for a great wearable or pocketable project? Check out the Trinket Everyday Carry Contest, and get hacking!

 

Build Your Own Raytracing Minion

A canceled project left [Craig] with six Raspberry Pi based devices he calls “Minions”. A minion is a Raspberry Pi model A in a small enclosure with an Adafruit 2.2″ 320×240 SPI LCD. The LCD lives in a lollipop style circular housing above the base. [Craig] has found a use for one of his minions as a desktop raytracer.

The Raspberry Pi is quite capable of running Persistance Of Vision Raytracer, or POV-Ray. POV-Ray started life as an early PC based raytracer. Created as a port of an Amiga program called DKBTrace, which was itself a port of a Unix raytracer, POV-Ray first was released in 1987. For the uninitiated, raytracers like POV-Ray  literally trace rays from a light source to an image plane. As one would imagine, the Raspberry Pi’s little ARM processor would take quite a bit of time to raytrace a high resolution image. However, when targeting a 320×240 LCD, it’s not half bad.

[Craig’s] minion is running his own software which he calls ArtRays. Based upon a setup file, ArtRays can render images from several sources, including the internet via a WiFi dongle, or a local SD card. Rather than walk through the setup and software install, [Craig] has provided a link to download a full SD card image to build your own Minion. It might be worth experimenting on your own first though, rather than killing his server with a 1GB download.

We’re glad [Craig] has found use for one of his minions, now we have to see what he’s done with the other five!

L3D Cube Takes the Work out of Building an LED Cube

Building an LED cube usually means a heck of a lot of delicate soldering work. Bending jigs, assembly jigs, and lots of patience are the name of the game. The problem multiplies if you want to build with RGB LEDs. [Shawn and Alex] are hoping to change all that with their L3D cube. Yes, L3D is a Kickstarter campaign, but it has enough good things about it that we’re comfortable featuring it here on Hackaday. What [Shawn and Alex] have done is substitute WS2812b surface mount LEDs for the 5mm  or 3mm through hole LEDs commonly used in cubes. The downside is that the cube is no longer visible on all sides. The upside is that it becomes a snap to assemble.

The L3D cube is open source hardware. The source files are available from separate software and hardware Github repositories. Not next week, not when they hit their funding goal, but now. We seriously like this, and hope all crowdfunding campaigns go this route.

The L3D cube uses an open source Spark Core as its processor and WiFi interface. Using WS2812b’s means less I/O pins, and no LED driver chips needed. This makes it perfect for a board like Spark or Arduino.  On the software side, the team has created a Processing Library which makes it easy to create animations with no coding necessary.

L3D has all the features one would expect from an LED cube – a microphone for ambient sound visualizations, and lots of built in animations. It seems [Shawn and Alex] have also created some sort of synchronization system while allows multiple cubes to work together when stacked. The team is hoping someone will come up with a 3D printed light diffuser to make these cubes truly a 360 degree experience.

The L3D cube campaign is doing well, [Shawn and Alex] are close to doubling their $38,000 goal. Click past the break to check out their Kickstarter video!

Continue reading “L3D Cube Takes the Work out of Building an LED Cube”

ArTICam Interfaces Game Boy Camera with TI Calculators

[Christopher Mitchell] has given Texas Instruments calculators the ability to capture images through a Game Boy Camera with ArTICam. First introduced in 1998, The Game Boy Camera was one of the first low-cost digital cameras available to consumers. Since then it has found its way into quite a few projects, including this early Atmel AT90 based hack, and this Morse code transceiver.

TI calculators don’t include a Game Boy cartridge slot, so [Christopher] used an Arduino Uno to interface the two. He built upon the Arduino-TI Calculator Linking (ArTICL) Library  to create ArTICam. Getting the Arduino to talk with the Game Boy Camera’s M64282FP image sensor turned out to be easy, as there already are code examples available. The interface between the camera sensor and the Arduino is simple enough. 6 digital lines for an oddball serial interface, one analog sense line, power and ground. [Christopher] used a shield to solder everything up, but says you can easily get away with wiring directly the Arduino Uno’s I/O pins. The system is compatible with the TI-83 Plus and TI-84 Plus family of calculators. Grabbing an image is as simple as calling  GetCalc(Pic1) from your calculator program.

So, If you have an old calculator lying around, give it a try to enjoy some 128×123-pixel grayscale goodness!

Hacklet 24 – Raspberry Pi Projects

Experimenting with embedded Linux used to mean reformatting an old PC, or buying an expensive dev board. In February of 2012, the Raspberry Pi was released, and it has proven to be a game changing platform. According to the Raspberry Pi Foundation, over 3.8 million boards have been sold. 3.8 million translates into a lot of great projects. This week’s Hacklet focuses on some of the best Raspberry Pi projects on Hackaday.io!

rpfpvWe start with [richardginus] and the RpiFPV (aka Raspberry Pi First Person View) project. [Richardginus]  is trying to build a low latency WiFi streaming camera system for radio-controlled models using a Raspberry Pi and camera. He’s gotten the system down into a respectable 160 milliseconds on the bench, but in the field interference from the 2.4GHz R/C transmitter drives latency way up. To fix this, [Richardginus] is attempting to control the plane over the same WiFi link as the video stream. We’d also recommend checking out some of those “outdated” 72 MHz R/C systems on the used market.

piholgaNext up is [James McDuffie] and his RPi Holga. Inspired by [Peter’s] Holga camera project, [James] has stuffed a Raspberry Pi model A, a camera module, and a WiFi adapter into a Holga camera body. The result looks like a stock Holga.  We saw this camera up close at the Hackaday 10th Anniversary event, and it fooled us – we thought [James] was just a lomography buff. It was only after seeing his pictures that we realized there was a Pi hiding inside that white plastic body! Definitely check out [James’] instructions as he walks through everything from hardware mods to software installation.

cluster2No Raspberry Pi list would be complete without a cluster or two, so we have [Tobias W.] and his 3 Node Raspberry Pi Cluster. The Raspberry Pi makes for a cheap and efficient platform to experiment with cluster computing. [Tobias] did a bit more than just slap a few Pis on a board and call it a day though. He custom machined an aluminum plate to hold his 3 node cluster. This makes wire management a snap. The Pi’s communicate through a four port Ethernet hub and all run from a single power supply. He even added a key switch, just like on the “old iron” mainframes. [Tobias] has been a bit quiet lately, so if you run into him, tell him we’re looking for an update on that cluster!

pivenaFrom [Tim] comes the PIvena, a Raspberry Pi laptop which takes its styling cues from [Bunnie Huang’s] Novena computer.  Pivena is a bit smaller though, with a 7” HDMI LCD connected to the Pi. The case is made from laser cut wood and a few 3D printed parts. Everything else is just standard hardware. [Tim] kept the PIvena’s costs down by using a wooden kickstand to hold up the screen rather than Novena’s pneumatic spring system. The base plate of the PIvena includes a grid of mounting holes just like the Novena. There is also plenty of room for batteries to make this a truly portable machine.  The end result is a slick setup that would look great at any Hackerspace. We hope [Tim] creates an update to support the new Raspberry Pi B+ boards!

Our Raspberry Pi-based alarm clock is chiming the hour, so that’s about it for this episode of the Hacklet! As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Announcing The Trinket Everyday Carry Contest

Now that we’ve recovered from our Munich party and the awarding of The Hackaday Prize, we’re ready to announce our latest contest. We’ve been having a lot of fun with our Trinket Pro boards, both the 10th anniversary edition and the new Hackaday.io branded models.  While we were soldering, compiling, and downloading, a contest idea took root. Trinket Pro really excels when used in small projects, the kind which would fit in a pocket. To that end we’re holding the Trinket Everyday Carry Contest, a showcase for small, pocketable projects which are useful everyday. ‘Useful everyday’ is a bit of a broad term, and we intended it that way. Tools are useful of course , but so are jewelry pieces. It’s all in the eye of the builder and users. We’re sure our readers will take this and run with it, as they have with our previous contests.

There are some great prizes in store for the entrants, including a brand new Rigol DS1054Z  oscilloscope! The top 50 entrants will get custom Trinket Everyday Carry Contest T-shirts. Check out the contest page for a full list. 

submit-project-to-trinket-edcWe know you all love to procrastinate with your entries, so we’re going to be offering a few perks to those who enter early and update often. Each week, we’ll throw all the entrants who have published at least one project log full of details into a drawing for a special prize from The Hackaday Store. To be considered you must officially submit your project which is accomplished through a drop-down list on the left side of your project page.

Remember, the contest isn’t just about winning a scope, a meter, or any of the other prizes. It’s about creating new Open Hardware designs that nearly anyone can build. So grab those soldering irons, load up those copies of the Arduino IDE, AVR-GCC, or WinAVR, and get hacking!

You can view the all of the contest entries in this list.