Trinket EDC Contest Winners

It’s time to announce the winners of the Trinket Everyday Carry Contest! We’ve had a great 5 weeks watching the projects come together. A team of Hackaday staffers spent their weekend watching videos and selecting their top entries based on the contest rules. We had a really hard time picking the top three – the competition was tight, and there were quite a few awesome projects.

Without further ado, here are the winners!

1337toolFirst Prize: 1337 3310 tool. [Mastro Gippo] really knocked this one out of the park. He built a swiss army knife of a tool out of the iconic Nokia 3310 candybar phone. 1337 3310 tool is a graphing voltage and current meter, an ohmmeter, a continuity tester that plays the original Nokia ringtone, and a gaming machine which can play Tetris.  [Mastro Gippo] is 99% there with TV-B-Gone functionality as well. Amazingly, [Mastro Gippo] kept the Nokia look and feel in his user interface. He spent quite a bit of time grabbing data and bitmaps from the 3310’s original ROM.  [Mastro Gippo] is getting a Rigol DS1054Z scope to help iron out the bugs in his future projects!

pavaproSecond Prize: Pavapro – portable AVR programmer. [Jaromir] built an incredible pocket-sized microcontroller programming tool. Pavapro can read and edit text files, handle serial I/O at 9600 baud, and burn AVR microcontrollers. If that’s not enough, it can actually assemble AVR binaries from source. That’s right, [Jaromir] managed to fit an entire assembler on the Pro Trinket’s ATmega328 processor. Pavapro’s 16 button keypad won’t allow for much in the way of touch typing, but it does get the job done with T9 style text entry. The device is also extensible, we’re hoping [Jaromir] adds a few other architectures! PIC and MSP430 modes would be awesome!  [Jaromir] will be receiving a Fluke 179 multimeter with a 6 piece industrial electronics tip kit! We’re sure he’ll put it to good use.

robohandThird Prize: Robotic 3rd Hand. Let’s face it. We can’t all be Tony Stark. But [Tim] gets us a little bit closer with his awesome wearable entry. Need a tool? Just press the button, and Robotic 3rd Hand will give you a … hand. [Tim’s] creation utilizes the Pro Trinket to drive a servo which moves an incredibly well designed and 3D printed mechanism that lifts a screwdriver off the wearer’s wrist and places it into their hand. [Tim] originally was going to go with Electromyography (EMG) sensors to drive the hand, however he switched to a simple button when they proved problematic. We absolutely think this was the right decision for the contest – it’s always better to have a simpler but working project rather than a complex yet unreliable one. That said, we’d love to see him circle back and give EMG another try! [Tim’s] next project will be soldered up with the help of a Hakko FX888D with a tip kit. If things get a bit wobbly, he can use his new Panavise 324 Electronic Work center to keep everything steady.

If you didn’t make the top three in this contest, don’t give up! We’re going to be having quite a few contests this year. The top 50 entrants will receive custom Hackaday EDC Contest T-shirts. Check out the full list of 50 on Hackday.io!

A Scanning Electron Microscope for the Living Room

There are hackers who have soldering setups on the dining room table, and then there are hackers who have scanning electron microscopes in their living room. [Macona] is part of the latter group, with a Hitachi S-450 SEM he’s repaired and modified himself. [Macona] has documented the whole thing on Hackaday.io. The Hitachi came to him and a friend as a derelict. First it was broken, then stored for 10 years. It turned out the problem was a high voltage cable cut and spliced with electrical tape. The tape eventually broke down and shorted out the 500V supply. Thankfully the rectifier diodes were the only parts that needed to be replaced.

analog1The SEM sprang to life and gave [Macona] and a friend their first images. However, SEMs are finicky beasts. Eventually the filament burned out and needed to be replaced. New filaments are $500 US for a box of 10, which is more than [Macona] wanted to spend. It turns out filaments can be built at home. A bit of .089mm tungsten wire and a spot welder were all it took to fix the issue. Next to go bad was the scan amplifier. While SEMs use many exotic parts, the Hitachi used relatively common Sanyo STK070 audio amplifiers for the purpose – an easy fix!

One thing that makes this SEM unique is the is Energy Dispersive X-Ray Spectroscopy (EDX) unit attached to it. The fragile liquid nitrogen cooled sensor was working, but the 1980’s era signal processing computer was a bit too old to bring up. A friend and fellow SEM hobbiest gave [Macona] a slightly newer Kevex Sigma Gold signal processor, which was nearly a plug and play upgrade for his machine. The new processor processor also gave him digital beam controls and a digital output which could be used to capture images with a PC.

Once all the connections were made, the EDX worked surprisingly well, even finding gold in a uranium ore sample placed in the microscope.

Now that old scanning electron microscopes being retired, it’s only a matter of time before more us get a chance to join the ranks of [Jeri Ellsworth], [Ben Krasnow] and [Macona] with our own personal SEMs!

Hacklet 28 – Programmable Logic Hacks

FPGAs, CPLDs, PALs, and GALs, Oh My! This week’s Hacklet focuses on some of the best Programmable Logic projects on Hackaday.io! Programmable logic devices tend to have a steep learning curve.  Not only is a new hacker learning complex parts, but there are entire new languages to learn – like VHDL or Verilog. Taking the plunge and jumping in to programmable logic is well worth it though. High-speed projects which would be impossible with microcontrollers are suddenly within reach!

fpga-hdmiA great example of this is [Tom McLeod’s] Cheap FPGA-based HDMI Experimenting Board. [Tom’s] goal was to create a board which could output 720p video via HDMI at a reasonable frame rate. He’s using a Xilinx Spartan 6 chip to do it, along with a handful of support components. The images will be stored on an SD card. [Tom] is hoping to do some video with the setup as well, but he has yet to see if the chip will be fast enough to handle video decoding while generating the HDMI data stream. [Tom] has been quiet on this project for a few months – so we’re hoping that either he will see this post and send an update, or that someone will pick up his source files and continue the project!

ardufpgaNext up is our own [technolomaniac] with his Arduino-Compatible FPGA Shield. Starting out with FPGAs can be difficult. [Technolomaniac] has made it a bit easier with this shield. Originally started as a project on .io and now available in The Hackaday Store, the shield features a Xilinx Spartan 6 FPGA. [Technolomaniac] made power and interfacing easy by including regulators and level shifters to keep the sensitive FPGA happy. Not sure where to start? Check out [Mike Szczys’] Spartan-6 FPGA Hello World! [Mike] takes us from installing Xilinx’s free tool chain to getting a “hello world” led blinker running!

lander3Still interested in learning about Programmable Logic, but not sure where to go? Check out [Bruce Land’s] Teaching FPGA parallel computing. Actually, check out everything [Bruce] has done on Hackaday.io – the man is a living legend, and a wealth of information on electronics and embedded systems. Being a professor of engineering at New York’s Cornell University doesn’t hurt either! In Teaching FPGA parallel computing, [Bruce] links to Cornell’s ECE 5760 class, which he instructs. The class uses an Altera/Terasic DE2 FPGA board to demonstrate parallel computing using programmable logic devices. Note that [Bruce] teaches this class using Verilog, so all you seasoned VHDL folks still can learn something new!

 

chamFinally, we have [Michael A. Morris] with Chameleon. Chameleon is an Arduino compatible FPGA board with a Xilinx Spartan 3A FPGA on-board. [Michael] designed Chameleon for two major purposes:  soft-core processors, and intelligent serial communications interface. On the processor side Chameleon really shines. [Michael] has implemented a 6502 core in his design. This means that it would be right at home as the core of a retrocomputing project. [Michael] is still hard at work on Chameleon, he’s recently gotten fig-FORTH 1.0 running! Nice work [Michael]!

Want more programmable logic goodness? Check out our Programmable Logic List!

That about wraps things up for this episode of The Hacklet! As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Trinket EDC Contest – The Deadline Approaches

We’ve got just under 2 days left in the Trinket Everyday Carry Contest. With 79 entries, and t-shirts going to the top 50 entrants, you’ve got pretty darn good odds of getting a shirt out of all of this! The design is great too, [Joe Kim] really did a great job with it!

shirt-low

 

The idea is simple: Build small, pocketable projects which are useful everyday.

We explained everything in our announcement post, and the full rules are available on the contest page. But just as a reminder, the main requirements are

  • The project Must use a Pro Trinket, or a board based on the open source Pro Trinket design.
  • The project must have at least 3 project logs
  • The project must have at least one video
  • The Hackaday.io project must include enough documentation to allow an average hobbyist to replicate the project

There are already some awesome entries vying for the top prize, but who knows – someone may come out of nowhere and walk away with a sweet Rigol ds1054z oscilloscope!

 

The contest deadline is January 3rd, at 12:00 am PDT. The clock is ticking, so stop waiting, and go build something awesome! Good luck to everyone who enters!

TRINKET EDC CONTEST DRAWING #5 RESULTS

The final random drawing for Hackaday’s Trinket Everyday Carry Contest was held tonight, and the winner is [flaming_goat] with Trinket Pocket IR Analyser/Transmitter!

ir2In addition to having an awesome username, [flaming_goat] loves IR protocols. Trinket Pocket IR Analyser/Transmitter is a standalone device to read, analyze and transmit Infrared (IR) signals. The IR portion of the project is handled by a Vishay TSOP38238 (PDF link) The 382 series is a 3 pin module. It comes in several variants, each tuned to a specific carrier frequency. The 38238 will decode IR signals at 38 kHz.

The demodulated IR signals are fed into the Pro Trinket, where they can be analyzed. Data is either sent through the serial terminal or displayed on the on-board 1.44″ TFT LCD. Source code for the whole project is up on [flaming_goat’s] GitHub repo.

[flaming_goat] will be receiving a Teensy 3.1 and an Audio+SD adapter from The Hackaday Store. If the Pro Trinket is a gateway drug, then Teensy 3.1 is the hardcore stuff. Powered by a Freescale Kinetis ARM Cortex M4 processor in a tiny package, the Teensy 3.1 packs quite a punch. You might think all that power would mean complex tools, but Teensy 3.1 is still easy to program using the Arduino IDE. The Audio+SD adapter board gives Teensy 3.1 the ability to create some pretty decent audio, thanks to the Teensy Audio Library.

This was the last weekly drawing for the Trinket Everyday Carry Contest, but there is still time to enter and win the big prizes! The deadline is January 3 at 12am PDT. That’s just about 3 days to enter – so procrastinators, get in the game!

Game Boy Cartridge Emulator Uses STM32

Game Boys may be old tech, but they still provide challenges to modern hackers. [Dhole] has come up with a cartridge emulator which uses an STMicroelectronics STM32F4 discovery board to do all the work. Until now, most flash cartridges used programmable logic devices, either CPLDs or FPGAs to handle the high-speed logic requirements. [Alex] proved that a microcontroller could emulate a cartridge by using an Arduino to display the “Nintendo” Game Boy boot logo. The Arduino wasn’t fast enough to actually handle high-speed accesses required for game play.

[Dhole] kicked the speed up by moving to the ARM Cortex-M4 based 168 MHz STM32F4. The F4’s  70 GPIO pins can run via internal peripherals at up to 100MHz, which is plenty to handle the 1MHz clock speed of the Game Boy’s bus. Logic levels are an issue, as the STM32 uses 3.3V logic while the Game Boy is a 5V device. Thankfully the STM32’s inputs are 5V tolerant, so things worked just fine.

Simple Game Boy cartridges like Tetris were able to directly map a ROM device into the Game Boys memory space. More complex titles used Memory Block Controller (MBC) chips to map sections of ROM and perform other duties. There were several MBC chips used for various titles, but [Dhole] can emulate MBC1, which is compatible with the largest code base.

One of the coolest tricks [Dhole] implemented was displaying a custom boot logo. The Game Boy used the “Nintendo” logo as a method of copyright protection. If a cartridge didn’t have the logo, the Game Boy wouldn’t run. The logo is actually read twice – once to check the copyright info, and once to display it on the screen. By telling the emulator to change the data available at those addresses after the first read, any graphic can be displayed.

If you’re wondering what a cartridge emulator would be useful for (other than pirating games), you should check out [Jeff Frohwein’s] Gameboy Dev page! [Jeff] has been involved in Game Boy development since the early days. There are literally decades of demos and homebrew games out there for the Game Boy and various derivatives. .

Continue reading “Game Boy Cartridge Emulator Uses STM32″

Trinket EDC Contest Entry: Shorty

Sometimes finding a short-circuit is easy, especially after the magic smoke has escaped. Finding a short on a newly etched or milled board though, can be a maddening task. Many of us have been there – wrestling with multimeter probes under a magnifier trying to find the offending bit of copper that is the source of all our problems. [Jaromir] designed Shorty to make this task a little bit easier.

Shorty is a short-circuit finder – but it’s not exactly like the one you would find on a typical multimeter.  [Jaromir] used MCP6041 Op-Amp to detect resistances down to the order of tens of milliohms. Determining an exact resistance measurement at these levels would require a heck of a lot of calibration. When looking for a short though, [Jaromir] is only concerned with the relative value – is he getting closer to or further away from the short. He determines this by sound. The Op-Amp output is sent to the Pro Trinket’s ADC input. The trinket drives a speaker with lower or higher tones based upon the ADC voltage. Much like the childhood game of “hot and cold”, Shorty will direct you right to your short!

There’s still time to enter the Trinket Everyday Carry Contest. The main contest runs until January 2, but we’re having random drawings every week! Don’t forget to write a project log before the next drawing at 9pm EST on Tuesday, December 30th. You and all of the other entrants have a chance to win a Teensy 3.1 from The Hackaday Store!