Join Hackaday And Tindie At The Southern California Linux Expo

Do you like Open Source? Join Hackaday and Tindie at the largest community-run Open Source conference in North America. We’ll be at the Southern California Linux Expo next week, and we want to see you there.

What’s happening at SCALE this year? Amateur radio license exams, a PGP signing party, Bad Voltage Live and The Spazmatics, and a ton of great talks.

Hackaday and Tindie will be at SCALE Friday through Sunday, showing off the coolest parts of Hackaday, Hackaday.io, and our lovable robotic dog, Tindie. We’ll be handing out t-shirts and stickers, and we’ll be giving tours of the SupplyFrame Design Lab located just two blocks away from the convention center. The Design Lab is a crown jewel of our corporate overlord’s emphasis on Open Hardware, and if you want to see where the magic happens, this is your chance. We’ll be running tours of the Lab on Friday, so find the Hackaday and Tindie crew in the expo area around 3:40 PM.

Here’s something cool: We’re offering discounted SCALE passes, too. They’re 50% off using the code ‘HACK’ at this link. That’s $45 for four days of fun. Continue reading “Join Hackaday And Tindie At The Southern California Linux Expo”

33C3: Dissecting 3G/4G Phone Modems

[LaForge] and [Holger] have been hacking around on cell phones for quite a while now, and this led to them working on the open cellphone at OpenMoko and developing the OsmocomBB GSM SDR software. Now, they are turning their sights on 3G and 4G modems, mostly because they would like to use them inside their own devices, but would also like to make them accessible to the broader hacker community. In this talk at the 33rd Chaos Communications Congress (33C3), they discuss their progress in making this darkest part of the modern smartphone useful for the rest of us.

This talk isn’t about the plug-and-play usage of a modern cell-phone modem, though, it’s about reprogramming it. They pick a Qualcomm chipset because it has a useful DIAG protocol, and in particular choose the Quectel EC20 modem that’s used in the iPhone5, because it makes the DIAG stream easily available.

Our story begins with a firmware upgrade from the manufacturer. They unzipped the files, and were pleasantly surprised to find that it’s actually running Linux, undocumented and without the source code being available. Now, [LaForge] just happens to be the founder of gpl-violations.org and knows a thing or two about getting code from vendors who use Linux without following the terms and conditions. The legal story is long and convoluted, and still ongoing, but they got a lot of code from Quectel, and it looks like they’re trying to make good.

Qualcomm, on the other hand, makes the Linux kernel source code available, if not documented. (This is the source on which Quectel’s code is based.) [LaForge] took over the task of documenting it, and then developing some tools for it — there is more going on than we can cover. All of the results of their work are available on the wiki site, if you’re getting ready to dig in.

Continue reading “33C3: Dissecting 3G/4G Phone Modems”

The Best Conference Badge Of 2017 Is A WiFi Lawn

It’s February, conference season hasn’t even started yet, and already there’s a winner of the best electronic badge of the year. For this year’s MAGfest, [CNLohr] and friends distributed 2,000 ESP8266-based swag badges.

These custom #badgelife badges aren’t. Apparently, MAGFest wouldn’t allow [CNLohr] to call these devices ‘badges’. Instead, these are ‘swadges’, a combination of swag and badges.  On board theses swadges is an ESP-12, a quartet of RGB LEDs, and buttons for up, down, left, right, A, B, Select, and Start. The swadge is powered by two AA batteries (sourced from Costco of all places), and by all accounts the badge was a complete success.

[CNLohr] is one of the great ESP8266 experts out there, and one of the design goals of this badge is to have all of these swadges communicate over raw WiFi frames. This turned out to be a great idea – using normal WiFi infrastructure with two thousand badges saturated the spectrum. The control system for was simply three badges, one per WiFi channel, that tells all the badges to change the color of the LEDs.

The swadge was a complete success, but with a few hundred blinkey glowey WiFi devices, you know [CNLohr] is going to come up with something cool. This time, he turned his lawn into a rave. About 175 swadges were laid out on the lawn, all controlled by a single controller swadge. The color of the LEDs on each swadge in the yard changes in response to the WiFi signal strength. By swinging the controller badge around his head, [CNLohr] turned his yard into a disco floor of swirling blinkieness. It looks awesome, although it might not visualize WiFi signals as well as some of [CNLohr]’s other ESP hacks.

This is a fantastic build and was well received by everyone at MAGFest. Be sure to check out the videos below, they truly show off the capabilities of this really cool piece of wearable hardware.

Continue reading “The Best Conference Badge Of 2017 Is A WiFi Lawn”

33C3: Edible Soft Robotics

Certainly one of the more entertaining talks of the 33rd Chaos Communications Congress was [Kari Love]’s talk on her experiments in mixing food with function. In [Kari]’s talk at the 2016 Hackaday Supercon, she talked extensively about working on soft robotic for NASA. At the 33C3, her focus was twofold: on a fun side project to make mobile robots out of stuff that you can eat, and to examine the process of creative engineering through the lens of a project like this.

homeelliotpendrive33c3-8113-eng-edible_soft_roboticsmp4-shot0005If you look up edible robotics, you get a lot of medical literature about endoscopes that you can swallow, or devices that take samples while they’re inside you. That’s not what [Kari]’s after at all. She’s after a robot that’s made of candy, a yummy machine. And while this is still a work in progress, she demonstrated a video of an all-licorice cable-based actuator.

homeelliotpendrive33c3-8113-eng-edible_soft_roboticsmp4-shot0006_thumbnailBut more than that, she demonstrated all of the materials she’s looked at so far, and the research she’s done. To some extent, the process is the substance of this project, but there’s nothing wrong with some tasty revelations along the way.

This talk was a potpourri of helpful tips and novel facts. For instance, if you’re working in candy robotics, don’t eat your mistakes. That stomach ache that your mom always said you’d get? You will. Did you know that the gummi in gummibears is re-heatable and re-moldable? In addition, of the gels that she made, it was the most delicious. And finally, Pop Rocks don’t have enough CO2 in them to drive pneumatics. Who knew? [Kari] knows. And now you do too.

Continue reading “33C3: Edible Soft Robotics”

33C3: Hunz Deconstructs the Amazon Dash Button

The Amazon Dash button is now in its second hardware revision, and in a talk at the 33rd Chaos Communications Congress, [Hunz] not only tears it apart and illuminates the differences with the first version, but he also manages to reverse engineer it enough to get his own code running. This opens up a whole raft of possibilities that go beyond the simple “intercept the IP traffic” style hacks that we’ve seen.

dash_block_diagramJust getting into the Dash is a bit of work, so buy two: one to cut apart and locate the parts that you have to avoid next time. Once you get in, everything is tiny! There are a lot of 0201 SMD parts. Hidden underneath a plastic blob (acetone!) is an Atmel ATSAMG55, a 120 MHz ARM Cortex-M4 with FPU, and a beefy CPU all around. There is also a 2.4 GHz radio with a built-in IP stack that handles all the WiFi, with built-in TLS support. Other parts include a boost voltage converter, a BTLE chipset, an LED, a microphone, and some SPI flash.

The strangest part of the device is the sleep mode. The voltage regulator is turned on by user button press and held on using a GPIO pin on the CPU. Once the microcontroller lets go of the power supply, all power is off until the button is pressed again. It’s hard to use any less power when sleeping. Even so, the microcontroller monitors the battery voltage and presumably phones home when it gets low.
Continue reading “33C3: Hunz Deconstructs the Amazon Dash Button”

33C3: How Can You Trust Your Random Numbers?

One of the standout talks at the 33rd Chaos Communications Congress concerned pseudo-random-number generators (PRNGs). [Vladimir Klebanov] (right) and [Felix Dörre] (left) provided a framework for making sure that PRNGs are doing what they should. Along the way, they discovered a flaw in Libgcrypt/GNUPG, which they got fixed. Woot.

mpv-shot0012-zoomCryptographically secure random numbers actually matter, a lot. If you’re old enough to remember the Debian OpenSSL debacle of 2008, essentially every Internet service was backdoorable due to bad random numbers. So they matter. [Vladimir] makes the case that writing good random number generators is very, very hard. Consequently, it’s very important that their output be tested very, very well.

So how can we test them? [Vladimir] warns against our first instinct, running a statistical test suite like DIEHARD. He points out (correctly) that running any algorithm through a good enough hash function will pass statistical tests, but that doesn’t mean it’s good for cryptography.
Continue reading “33C3: How Can You Trust Your Random Numbers?”

Steve Collins: When Things Go Wrong In Space

[Steve Collins] is a regular around Hackaday. He’s brought homebrew LIDARs to our regular meetups, he’s given a talk on a lifetime’s worth of hacking, and he is the owner of the most immaculate Hackaday t-shirt we’ve ever seen.

For the 2016 Hackaday SuperConference,  [Steve] took a break from his day job of driving spacecraft around the Solar System. As you can imagine, NASA plans on things going wrong. How do you plan for that? [Steve] answers all your questions by telling you what happens when things go wrong in space.

Continue reading “Steve Collins: When Things Go Wrong In Space”