Apollo, the Everything Board

The best projects have a great story behind them, and the Apollo from Carbon Origins is no exception. A few years ago, the people at Carbon Origins were in school, working on a high power rocketry project.

Rocketry, of course, requires a ton of sensors in a very small and light package. The team built the precursor to Apollo, a board with a 9-axis IMU, GPS, temperature, pressure, humidity, light (UV and IR) sensors, WiFi, Bluetooth, SD card logging, a microphone, an OLED, and a trackball. This board understandably turned out to be really cool, and now it’s become the main focus of Carbon Origins.

There are more than a few ways to put together an ARM board with a bunch of sensors, and the Apollo is extremely well designed; all the LEDs are on PWM pins, as they should be, and there was a significant amount of time spent with thermal design. See that plated edge on the board? That’s for keeping the sensors cool.

The Apollo will eventually make its way to one of the crowdfunding sites, but we have no idea when that will happen. Carbon Origins is presenting at CES at the beginning of the year, so it’ll probably hit the Internet sometime around the beginning of next year. The retail price is expected to be somewhere around $200 – a little expensive, but not for what you’re getting.

Hackaday Links: December 22, 2013

hackaday-links-chain

[Korben] is using a picture frame as a Bluetooth speaker (translated). He hacked a Rock’R² for this project. It’s a device that has a vibrating element which can be used to make any hollow item into a speaker.

Entertain yourself over the holidays by mastering the Apollo Guidance Computer simulator. It’s a JavaScript version of the computer used in the modules of the Apollo moon missions.  [Thanks Gregory and Paul]

Here’s a little mirror attachment that lets you use your laptop as an overhead projector. [Ian] calls it the ClipDraw. Affix it to the webcam and use the keyboard as the drawing surface. Since it’s simply using the camera this works for both live presentations and video conferencing. What we can’t figure out is why the image doesn’t end up backward?

This guide will let you turn a Carambola board into an AirPlay speaker.

Those who suck at remembering the rules for a game of pool will enjoy this offering. It’s some add-on hardware that uses a color sensor to detect when a ball is pocketed. The Raspberry Pi based system automatically scores each game.

We spend waaaay too much time sitting at the computer. If we had a treadmill perhaps we’d try building [Kirk's] treadmill desk attachment. It’s made out of PVC and uses some altered reduction fittings to make the height adjustable. It looks like you lose a little bit of space at the front of the belt, but if you’re just using it at a walking pace that shouldn’t matter too much.

You can have your own pair of smart tweezers for just a few clams. [Tyler] added copper tape to some anti-static tweezers. The copper pads have wires soldered to them which terminate on the other end with some alligator clips. Clip them to your multimeter and you’ve got your own e-tweezers.

Deconstructing Apollo Flight Hardware

IU

[Fran] has been researching the Saturn V Launch Vehicle Digital Computer – the computer that flew all the Apollo flights into orbit and onwards towards the moon – for a while now. Even though she’s prodded parts of the LVDC with x-rays and multimeters, this is the first time she’s committed to a little destructive testing.

After [Fran] took a flight-ready LVDC spare to the dentist’s office for x-raying and did an amazing amount of research on this artifact from the digital past, there was only so much she could learn without prying apart a few of these small, strange chip packages. Not wanting to destroy her vintage LVDC board, she somehow found another LVDC board for destructive reverse engineering.

This new circuit board was a bit different from the piece in her collection. Instead of the chip leads being soldered, these were welded on, much to the chagrin of [Fran] and her desoldering attempts. After removing one of these chips from the board, she discovered they were potted making any visual inspection a little difficult.

While [Fran]‘s attempts at reverse engineering the computer for a Saturn V were a bit unsuccessful, we’ve got to hand it to her for getting this far; it’s very, very likely the tech behind the LVDC was descended from ICBMs and would thus be classified. Documenting the other computer used in every Apollo launch is an impressive feat on its own, and reverse engineering it from actual hardware, well, we can’t think of anything cooler.

Hackaday Links: October 13, 2013

hackaday-links-chain

This week’s post on core rope ROM was pretty popular. [Joey] wrote in with a book recommendation for those that found the project interesting. Digital Apollo discusses the technology which NASA built into the guidance computer. That was also the subject of a recent Retrotechtacular.

A few members of the Vancouver Hack Space came up with their own take on the Word Clock. It uses an old monitor, a laser-cut bezel, and Javascript to light up the correct characters.

When we last looked in on [Vincent's] plywood stool project he had branched out into plywood folding chairs as well. Here’s two updates on his progress.

This one’s just silly. To keep up with his wife on exercise goals, this guy cheated using a reciprocating saw to spoof his exercise. Tape the FitBit to the saw blade, clamp the saw to the workbench, and then let her rip! [via Reddit]

[Harrison] wrote into share the Arduino button library he developed. It is designed to allow detection of multiple types of button events without blocking other operations. He came up with the project to use with his motorcycle hacking.

It looks like [Bertho] has kitted up his Executive Decision Maker. We first saw this as a perfboard project a couple of years ago.

And finally, [Bob Alexander] makes your hard drive clock look puny. His uses the platter from a 40-year-old mainframe hard drive.

Retrotechtacular: The Apollo Guidance Computer

There is so much amazing technology that came out of the space race. For this week’s Retrotechtacular we’re looking at the guidance computer used in the Apollo program undertaken by NASA in the 1960′s.

One of the main components of this system is the Inertial Measurement Unit or IMU. That’s a familiar term for hackers who build quadcopters or other devices for which spacial awareness is paramount. In this case the IMU provided critical information about the motion and orientation of the capsule during it’s trip from the Earth to the Moon and back. But it wasn’t just high tech electronics along for the flight. To determine actual position a sextant was used for triangulating position. Yes, this is the same type of measuring device used for centuries. The method of using the sextant is displayed above. The spacecraft was turned until the sextant pointed at a landmark on Earth. The instrument was the adjusted to line up a star as a landmark, then the computer calculated position based on time and the angles of the two points being sighted. There’s a lot more shown in this thirty-minute film including in-depth assembly and testing of the computer components.

Before we point you to a few related articles we’d like to mention that our stash of really cool Retrotechtacular tips is running low. So if you know of some old footage that’s awesome to watch please send us a tip about it.

Now if you can’t get enough about NASA electronics you should check out the LVDC board which [Fran] got her hands on. Also, it’s worth checking out the unbelievable soldering techniques specified in the NASA manual. There’s a pretty good discussion about that going on in the Reddit thread.

Continue reading “Retrotechtacular: The Apollo Guidance Computer”

Digging deeper into the Apollo Saturn V LVDC

LVDC-NAND-proto

[Fran] went all-out with her reverse engineering of the Apollo Saturn V LVDC board. Regular readers will remember that she was showing of the relic early this year when she took the board to her Dentist’s office to X-ray the circuit design. Since then she’s been hard at work trying to figure out how the thing functions using that look inside the board and components. When we say ‘hard at work’ we really mean it. Not only did she explore many different theories that resulted in dead ends, she also built her own version of the circuits to make sure they performed as she theorized. Above you can see her version of the NAND/AND gates used on the hardware.

We find her explanation of how the logic devices were originally fabricated to be very interesting. They started with a ceramic substrate and used additive processes to form the traces and add the gates. We’ve embedded her video explanation after the jump.

Continue reading “Digging deeper into the Apollo Saturn V LVDC”

In-depth look at an LVCD board from a Saturn V rocket

saturn-v-lvdc-board

Join [Fran] as she dons the hat of an electronics archaeologist when looking at this vintage circuit board from the space race. As part of her personal collection she somehow acquired a Launch Vehicle Digital Computer board for a Saturn V rocket. This particular unit was never used. But it would have been had the Apollo program continued.

[Fran] is enamored with this particular board because she believes it is the forerunner of modern digital circuit design and layout. Since routing circuit boards is part of what she does for a living you can see why this is important to her. Also, who isn’t excited by actual hardware from the space program? We’ve embedded two of her videos after the break. In the first she shows off the component to the camera and speaks briefly about it. But the second video has her heading to the dentist’s office for X-rays. The image above is a rotating X-ray machine, but it looks like the best imagery comes when a handheld gun is used. They get some great images of the traces, as well as the TTL components on the board itself.

Continue reading “In-depth look at an LVCD board from a Saturn V rocket”