Wirelessly Weighing Plants with the ESP8266

There’s a good number of hacks, and commercial products, for telling you when a plant needs watering. Most of them use an ADC to measure the resistance in the soil. As the soil’s moisture content drops, the resistance increases. High impedance, dead plant.

[Dani]’s Thirsdee takes a different approach to plant health monitoring. Instead of measuring resistance, it simply weighs the plant. As the soil dries up, it gets lighter. By measuring the change in weight, the amount of water in the pot can be estimated.

Thirsdee uses a load cell to measure the weight. It’s read using an HX711 ADC, which is controlled by a NodeMCU. This development board is based on the ESP8266 chip. Since Thirsdee has WiFi, it can push notifications to your phone and log data on ThingSpeak. If you’re looking at the plant, an OLED shows you the current status of the plant. For us viewing from home, we can see a graph of [Dani]’s plant drying out in real time.

[Dani] provides us with a list of suppliers for the parts, and all the source code on Github.

Automatic Plant Care Minus the Microcontroller

Plants are a nice addition to most any habitat. Many of them bear flowers or attractive foliage, some of them help filter the air, and others, like aloe vera, have medicinal properties. While some plants require very little care, they all need a little moisture at some point. Overall, plant care is a bit fiddly: water them too much and you run the risk of root rot; water too little and risk death by dehydration. Hackaday alum [Kevin Darrah] would prefer not to gamble with either condition, and so in the course of a weekend’s time, he constructed a solar-powered automatic plant watering system from components he had on hand.

While he likely had a microcontroller or two lying around, he didn’t use one. His is a system of MOSFETs that trigger a motorized pump from one of those automatic bug spray bottles to draw from a reservoir and water the plant. The solar panel charges a bank of 6800µF capacitors that [Kevin] took out of an old receiver. When the desired charge is reached, the small soil sensor module is powered, assessing the moisture level. If the level is below the threshold determined by a trimmer pot, the power from the capacitor bank is dumped to the water pump and his plant gets a drink.

[Kevin]’s design deals nicely with the possible pitfalls of solar power. He’s included a 0.1µF cap to ensure latching through the system, and added a bleed resistor so that the pump is never powered unnecessarily. After running it for a couple of days, he’s already seeing moisture regulation in the soil. His complete demonstration and theory of operation is after the break. If you’re into solar power but aren’t quite ready to ditch the µC, check out this Arduino-controlled solution for thirsty tomatoes or this PIC-powered plant pacifier.

Continue reading “Automatic Plant Care Minus the Microcontroller”

Hey There Little Plant. Let’s Be Friends!

poster_01_01

Perhaps, you’re circle of friends is getting too small. Or maybe, you just want to communicate with the leafy, green beings that have rooted themselves in the soil inside your house. If so, this environmental monitoring system will be perfect for you!

Created by [Dickson], this project monitors soil moisture, air temperature, and air humidity of your indoor plants and will alert you via email and SMS when your plants are thirsty. No longer will your sprouts shrivel up in the sun, but rather, they will be well-hydrated ready to produce their veggie goodness.

The system is battery operated, wireless, Arduino and Raspberry Pi based and comes with an Android app, which in turn allows you to view real-time and historical data, thus giving you the option to check in on your crew of Chlorophyll-embedded friends.

3116051405904844105

Let’s look at the sensors which are at work on the project.

Continue reading “Hey There Little Plant. Let’s Be Friends!”

Growing algae with an Arduino

algae_grow

We’ve seen automated grow boxes of all shapes and sizes, but all were for growing plants. [Jared] over at Inventgeek wanted to do something similar for his algae. He started off with an Arduino-based solution that allows the controlled pulse of LEDs connected to his standard bioreactor as a prototype. Once he determined his proof of concept worked, he began work on a design based on the Arduino Pro Mini that has more advanced features such as temperature monitoring and algae culture density monitoring via some fancy IR voodoo. The code is open source and the hardware is easily obtainable, all that remains is the desire to grow algae.

Automated plant growing

The Cheap Vegetable Gardener sent us his fully automated grow chamber project. In the quest to have fresh strawberries year round, they’ve made some progress in the area of automating their plant care. The whole thing is controlled by a computer that can turn on/off the lights and adjust the temperature. It also takes snapshots and logs the environment conditions so you can chart it all out nicely. The automated watering feature isn’t done yet, but hopefully will be soon.