An autonomous boat across the Atlantic

boat

While we may be waiting for unmanned drones to deliver a pizza, there’s already an unmanned ship plying the Atlantic on a transoceanic voyage. It’s called Scout, and it’s the product of about two years worth of work by a very close-knit group of friends.

Scout is a 12.5 foot ship constructed out of foam and carbon fiber loaded up with solar panels, electronics, an electric motor and a SPOT satellite tracker. The team has been working on Scout for the last two years now, and this last week the autonomous ship finally set out on its mission: a 3500 mile journey from Rhode Island across the Atlantic to Spain.

Right now, Scout is just over four days into its mission having travelled 90 miles from Rhode Island on its way to Spain. You can follow Scout on its journey on this very cool live tracking site.

[Read more...]

Send an Arduino to the moon for $300

sat

We’ve seen Kickstarter campaigns to put a single satellite into space and one to launch your own personalized postage-stamp sized satellite into low Earth orbit. This time, though, you can break the bonds of Earth and send your own Arduino compatible satellite on a collision course with the moon. The project is called Pocket Spacecraft, and exactly as its name implies, it allows you to send a small, flat, 8 cm diameter spacecraft to the surface of the moon.

The pocket spacecraft are made of metallized kapton, a very thin membrane stretched inside a loop of wire. On board this paper-thin spacecraft are a pair of solar cells and a bare die MSP430 microcontroller connected to a suite of sensors. Before launch, you can program your tiny space probe with commands to relay data back to Earth, either useful scientific data or a simple tweet.

These pocket spacecraft will be launched from a cubesat – a highly successful line of amateur spacecraft that are usually launched by hitching a ride with larger commercial satellites. To get from low Earth orbit to the moon is much harder than just hitchhiking, so the cubesat mothership comes equipped with either a solar sail or its own engine that electrolysed water into hydrogen and oxygen, the perfect rocket fuel.

Pocket Spacecraft is an amazingly impressive feat; there are literally dozens of amateur-built spacecraft orbiting above our heads right now, but so far none have ventured more than a few hundred miles away from their home planet. Getting to the moon with an amateur spacecraft is an amazing accomplishment, and definitely worthy of the $300 price tag.

DIY space experiments within a ping pong ball ‘satellite’

Pongsat space satellite

Ahhh space. The final frontier. While many people dream of one day becoming an astronaut (and possibly battling aliens or cylons), it’s a select few who actually make it their reality. Fortunately for us, there’s a middle ground that allows the masses to still have some fun in the sky. Enter the “Pongsat” program – space experiments within a ping pong ball.

Created by JP Aerospace, this free program allows anyone to create their own mini experiment and send it off to the edge of space. The imagination is the limit. Curious if a marshmallow will expand? Interested what the temperature would be? Wonder if you can charge a solar battery? Stuff it inside a ping pong ball and find out!

Check out the PDF Users Guide to get started, then their Blog and Facebook page for more up to date information.  Now go out there and get your experiment to Mars! (Or at least 100,00 feet)

Watch a video of in flight footage after the break.

[via adafruit]
[Read more...]

UPDATE: Roll your own GPS can now track twice as many satellites

diy-gps-module

[Andrew Holme] wrote in to tell us about some work he’s done to improve his scratch-built GPS receiver. He figured out a way to use the same hardware but double the number of satellites it can track to a total of eight. When we looked at the original hardware about a year ago it was limited to monitoring just four satellites. That’s the bare minimum for calculating position data. This will not only help increase the accuracy, but remove the problems that would have been cause if just one satellite was dropped because of an obstruction or other issue.

His solution is based entirely on using the FPGA in a different way. He had taken up almost all of the gates available in the Xilinx Spartan 3 chip. Now he’s implemented a CPU on the chip and is able take some of the work off of the hardware gate design by running code on it. He also found and squashed a bug in how the data was processed. He says his original work wasn’t taking into account the rotation of the earth when determining position. All of these improvements put his accuracy at +/- five meters even when he’s not tracking all eight satellites!

Observe a satellite’s Morse Code message today!

Niwaka1-satellite

If you live in the Eastern portion of the United States and the skies are clear you can see a student built satellite flashing LEDs in Morse Code today. But don’t worry. If you it’s cloudy or if you live elsewhere there are several other opportunities to see it in the coming days.

This is the Niwaka Fitsat-1. It was developed by students at the [Fukuoka Institute of Technology] and deployed from the International Space Station on October 4th. Included in the payload is an array of LEDs seen in the image above. On a set schedule these are used to flash a Morse Code message for two minutes at a time. That is what’s shown in the image on the upper right.

You can look up information on seeing Fitsat-1 in your own area using this webpage. All of the observation windows in our area require a pair of binoculars or better. We’re not sure if there is any case in which this can be seen by the naked eye.

[Thanks SWHarden and KomradBob]

Retrotechtacular: The birth of satellite communications

Last week was the fifty year anniversary of the launching of Telstar 1, the first communications satellite. Take a look back at the marvel of the early technology as shown in this newsreel footage about the first broadcast. The first formal use was a speech by President Kennedy allowing most of Europe to “witness democracy at work”. You’ve got to love that cold war era propaganda.

In addition to this electronics-filled marvel there were other experiments going on at the time that used passive devices as satellites. Project Echo sought to put reflective balloons at an altitude where they could be used to bounce signals around the curvature of the earth. This came almost exactly two years before the advent of Telstar 1.

There was a lot of media coverage of this anniversary, but the most interesting for us was an NPR interview with [Walter Brown], one of the engineers who helped build the device. Apparently nuclear weapons testing in space the day before the launch caused the initial tests to fail.

[Read more...]

FTA dish used to receive L-band amateur radio

[David Prutchi] has an FTA (free-to-air) satellite dish. This means he can tune and watch freely available satellite television feeds. But this sounds much better than it actually is. There isn’t much that’s broadcasted unecrypted from satellites with the exception of a collection of religious channels. But he still uses the dish by using the FTA satellites to calibrate the alignment, then repositioning it to receive L-Band radio transmissions with his own add-on hardware. In the image above it’s the spiral of wire attached to the dish’s collector.

The satellite transmissions are picked up on the KU-band by an aftermarket horn that [David] purchased for this purpose. To add his own helix receiver he cut a square mounting plate that fits around the horn. This plate serves as a reflector and ground plane, and also hosts the helix connector which picks up the L-band transmissions. He had to be creative with routing the first few inches of the helix but it looks like he manages to get some pretty good performance out of the hardware.

[via Hacked Gadgets]

Follow

Get every new post delivered to your Inbox.

Join 91,363 other followers