Sprite Graphics Accelerator on an FPGA

A demo running on a FPGA sprite accelerator

Graphics accelerators move operations to hardware, where they can be executed much faster. This is what allows your Raspberry Pi to display high definition video decently. [Andy]‘s latest build is a 2D sprite engine, featuring hardware accelerated graphics on an FPGA.

In the simplest mode, the sprite engine just passes commands through to the LCD. This allows for basic control. The fun part sprite mode, which allows for sprites to be loaded onto the FPGA. At that point, you can show, hide, and move the sprite. By overlapping many sprites, you something like the demo shown above.

The FPGA is from Xilinx, and uses their Block RAM IP to store the state of the sprites. The actual sprite data is contained on a 128 Mb external flash chip, since they require significant space.

The game logic runs on a STM32 Cortex M4 microcontroller which communicates with the FPGA and orders the sprites around. The FPGA then deals with generating frames and sending them to the LCD screen, freeing up the microcontroller.

If you’re wondering about the LCD itself, it’s 3.2″, 640 x 360, and taken from a Ericsson U5 Vivaz cellphone. [Andy] has a detailed writeup on reverse engineering it. After the break, he gives us a video overview of the whole system.

[Read more...]

Hackaday Links: October 16, 2011

Spinning DNA animation using sprites

[James Bowman] shows a way to use sprites to simulate parts of DNA moving in 3 dimensional space. The animations are driven by an Arduino board and Maple board, which allows a comparison of the processing differences between the two. [Thanks Andrew]

Tiny Pong

This Pong game is so small (translated), you’ll be fighting over who gets a closer view of the screen.

More CNC halftone pieces

[Christian] made a bunch of halftone pictures with a CNC mill. He took the concept from [Metalfusion's] halftone projects and ran with it. He even posted some video of the machining process (turn down your sound before viewing this one).

Most useless machine

[Jumbleview's] take on the most useless machine makes the entire lid shut off this rocker switch, instead of using a separate arm for the task.

7400 rectifier

[Noel] is using a couple of 7400 chips in an unorthodox way to form a full-wave rectifier. They’re not powered, but instead used for the internal diodes. It’s his entry in the 7400 contest.

Follow

Get every new post delivered to your Inbox.

Join 94,052 other followers