Digital Cootie Detector

Kids love games of exclusion. This usually manifests itself in games of ‘keep away,’ having someone ‘catch cooties,’ or the ever-popular ‘No Brian club.’ [Rob] wrote in to tell us about the digital cootie detector he built. The cootie detector operates on galvanic skin response. It’s actually very similar to an E-Meter, although instead of Thetans this device measures something that actually exists.

Galvanic skin response is a measure of the skin’s conductivity. Skin conductivity changes because sweat glands will be activated when someone is nervous. This is a measure of psychological arousal, making it a great detector for games of exclusion – a kid who doesn’t want cooties will ‘psych themself out’ and give themselves cooties.

Continue reading “Digital Cootie Detector”

Adding USB Connectivity To Old Benchtop Tools

frequency_counter_hacked_for_usb_connectivity

[Scott] was recently given a frequency counter, and once he brought it home, he started contemplating how he could possibly make it better. While the counter worked well as-is, he wanted to find a way to record data readings over a reasonably long period of time. He figured that interfacing it with his computer would be the best way to do this, but he had to find a way to connect the devices first.

He started poking around inside the frequency counter and stumbled upon a possible data source when taking a closer look at the display board. He found that he could read the frequency data as it was being written to the display, and send that data to his computer. He used an ATMega48 to intercept the data and code from the V-USB project to bit-bang the data to his PC over USB.

Now, anything he sees on the frequency counter can be easily collected and graphed on his computer with little fuss.

Stick around to see a quick video demonstration of his hack in action.

Continue reading “Adding USB Connectivity To Old Benchtop Tools”

Singing Robot

The 4DOF CXN-I anthropomorphic robot arm in the Mechatronics Lab at FICES-UNSL (Engineering faculty, San Luis National University, Argentina) was built from scratch, and it is still a work in progress to teach and learn about mechatronics , in order to build another, more robust and precise arm in the future. When one of the students working with the device thought “hey, these motors are quite noisy, aren’t they? let’s put them to work towards something more useful”.

Armed with some guitar tabs, a robot and some noisy servos, [Guille] got the robotic arm to sing a little song raised a couple of octaves, and included it in the introduction video. Because hey, whipping a metal arm around like that is pretty mechanically strenuous, and its not all that great for the servos either.

Join us after the break for a quick video, the singing starts about 58 seconds into the show.

Continue reading “Singing Robot”

Hybrid Roller Coaster Concept

prius_based_roller_coaster

Toyota recently ran an ad campaign touting “Ideas for Good” in which the actors speculated uses for Toyota Synergy Drive hybrid systems in non-automotive related applications. One idea that was floated involved using the car’s regenerative braking system at an amusement park, in an effort to reclaim and use some of a roller coaster’s kinetic energy.

Toyota sent a Prius to the team over at Deeplocal, who deconstructed it and found that the car could generate 60 amps of current when braking. That’s not an insignificant number, so they decided to create a cool demonstration showing how powerful the technology is. They built a coaster car from the Prius’ guts, and positioned it at the top of an elevated platform, which was connected to a 70 foot track. In the video embedded below they push the car from the platform and down the track, using the regenerative braking system to illuminate a large display of amusement park lights.

While the video is little more than a well-produced advertisement for Toyota, we can’t help but think that it’s pretty cool. It’s doubtful that we will suddenly see an inrush of hybrid-based roller coasters any time soon, but the concept is interesting nonetheless.

[via Notcot]

Continue reading “Hybrid Roller Coaster Concept”

Robot Vacuum Makes Cleaning Into A Game

This is not a Roomba hack, but a ground-up vacuum cleaner robot build. It’s the result of a class project from six students at the Royal Institute of Technology in Sweden. There’s a slew of information available in their paper, but fair warning that it’s an 8.6 MB PDF file that we couldn’t get Google to translate. We were able to skim the PDF and cut and paste to translate the interesting bits we found.

Unlike a Roomba, which just uses a little sweeper to pick up debris, this robot actually includes a vacuum. The image above shows that the cylindrical body is wrapped in an LED matrix, with an ultrasonic sensor on the front for obstacle avoidance. The robot uses a CAN bus to control the various modules inside. We don’t think there’s any autonomous function, but that’s made up for by the remote control. It communicates via a ZigBee module, and includes a d-pad, touch screen, and accelerometer.We’re a little bit hazy on how the games are played, but there are at least two interactive version: one called ball, and another modeled after the classic game of missile command.

You can check out the source code for the project in their repository, or join us after the break for two demo videos.

Continue reading “Robot Vacuum Makes Cleaning Into A Game”

Clocks Built From Old Aircraft Surplus Parts

aircraft_indicator_clocks

A few years ago, Tube Clock forum member[Sine1040] bought a set of four brand new aircraft indicator units that were built some time in the early 70’s. He had no idea what the units were actually used for, but he did know that he could repurpose them into some pretty slick looking clocks.

He disassembled all four boxes and between them, scrounged enough parts to build three clocks. After gutting the clocks and rearranging the digits, he built a timekeeping circuit using an ATMega8 which is clocked by a DS32 oscillator.

While the time is displayed using the large projection-style digit displays, the seconds are ticked off in the left-most analog meter. Minutes are also represented in the clock’s right-most analog window, swinging the needle from top to bottom as each one passes.

[Sine1040] paid special attention to keeping the boxes looking as stock as possible, with the only external modification being a power plug installed in place of an old grounding screw. The clock is definitely a different take on keeping time, and we think it looks great.

Continue reading to see a quick demo video of the clock in action.

[Thanks Brian]

Continue reading “Clocks Built From Old Aircraft Surplus Parts”

Arduino Powered 2.4 GHz Spectrum Analyzer

[Fred] dropped a note in our tip line to let us know about arduino forum user [bilbo]’s latest project: A 3-in-one spectrum analyzer, oscilloscope, volt-meter combo. The build consists of an Arduino, radio board and Nokia 5110 LCD breakout board.  The (thin) video after the jump shows the rig in action. Though soldered to a full sized perf-board we can see later, smaller, battery powered versions prove useful in rooting out wayward bluetooth signals, or just finding that lost microwave oven. Although [bilbo] uses the same radio board as similar builds  his creation boasts several different display modes, as well as doubling as a volt meter and miniature-oscilloscope. There is no shortage of previous spectrum analyzer builds, but this one is the first one we have seen running on an Arduino.

Thanks for the tip [Fred]! If you feel like wedging some frequency scanning capabilities into your next project don’t forget to check out [bilbo]’s forum posts for source code!

Continue reading “Arduino Powered 2.4 GHz Spectrum Analyzer”