Light Up Earrings

light up earrings

Unfortunately [ch00f’s] been too busy to write for Hack a Day lately, but he has finished off an awesome little project — Christmas LED earrings!

As with all his projects, there is a brilliant write up that covers everything — even for the stuff that didn’t work. But what we really have to admire about this project in particular is the scale at which he was working. The tiny battery squished in between the two boards? A mere 19mAh. Which is actually enough to power the earrings for a few hours, but is only the size and thickness of a few microSD cards!

The second thing that really popped out at us was the boards themselves, there’s just no room for a programming header! To work around this [ch00f] actually made the PCBs in 3 segments, programmed it, and then cut off the programming header section! If that’s not enough ingenuity, how about this – He also included hall effect sensors on-board to turn them off while charging! Not to mention an intricate wood box to charge them in…

Stick around after the break to see the great demo video, it even has some classy music from the 1930’s which really sets the mood.

Continue reading “Light Up Earrings”

HaDuino: Open Your Beer Using Arduino

Frankly we’re tired of Arduino having a bad name here at Hackaday. So [Brian Benchoff] came up with a way to make it useful to a wider audience. His creation, which we call the HaDuino, lets you use the Arduino clone to open a tasty bottle of beer.

Continue reading “HaDuino: Open Your Beer Using Arduino”

Circuit Bent Toy Keyboard Is MIDI Controlled

tymkrsKeyboard
The [Tymkrs] crew has come up with a pretty neat circuit bent toy keyboard hack. It’s been a while since we’ve seen a good circuit bending hack. This project started as a way to demo the [Tymkrs] “MIDI In Me” kit. A cheap toy keyboard was sacrificed for its sound generator board. Like many cheap mass-produced toys, this board is based upon a COB (chip on board) package. The silicon die of the main ASIC is placed directly on the PCB and bonded out to pads. A round epoxy blob keeps everything protected.

The [Tymkrs] found a number of the chip’s pads were unused in their keyboard. The inputs appeared to trigger drums, possibly for use in a different toy. These inputs, coupled with the ‘demo song’ buttons turned out to be the basis of this hack. MIDI input is sent to a Parallax Propeller. The prop runs a program that will set its I/O pins based upon MIDI Note On/Off commands. The I/O pins then drive transistors which inject signals into the button inputs of the keyboard.

The [Tymkrs] even went so far as to use a voltage divider on the main clock circuit of the keyboard. Changing the main clock causes a sort of pitch bend effect often heard with circuit bent toys. As with the buttons, a MIDI signal commands the prop to enable or disable oscillator signal injection. A potentiometer is used to tweak the oscillator frequency.

Continue reading “Circuit Bent Toy Keyboard Is MIDI Controlled”

SDRAM Controller For Low-end FPGAs

There are very few ‘recent’ FPGAs out there that can be easily soldered. Due to their important number of IOs, they usually come in Ball Grid Array (BGA) packages. The Xilinx Spartan 6 LX9, a TQFP144 FPGA (having pins with a 0.5mm pitch) is one of the few exceptions that can be used to make low end development boards. However, it doesn’t have a lot of logic and memory resources or an on-chip Memory Control Block implemented in the silicon. Therefore, [Michael] designed an SDRAM controller with a small footprint for it.

Writing an SDRAM controller from scratch isn’t for the fainthearted – first of all you really have to know how SDRAM  works (RAS, CAS, precharges, refresh cycles), and because of the high speed and accurate timing required you also have to learn some of the finer points of FPGA off-chip interfacing. In addition, most publicly available open cores are very complex – for example just the RTL core of the sdr_ctrl controller on opencores.org adds up to over 2,700 lines of Verilog. Even if it is not an accurate comparison metric, [Michael]’s controller is only 500 lines long.

Machine Metabolism: Structure-Reconfiguring Robots

truss reconfiguring robot

It might be difficult to tell from the picture, but you’re looking at a robot that is capable of building and disassembling simple truss structures. We’ll let that sink in for a moment.

[Jeremy Blum] finished his metabolic machine research back in 2011, but just this month has had his journal paper published in the IEEE Robotics and Automation Magazine on Structure-Reconfiguring Robots.

The concept behind this robot is biological metabolism – the ability to break down nutrients into building blocks, and then to use them to build new things. What if we could build a robot to emulate this most basic aspect of biology? Well, they have. Take a moment to imagine the implications in space: a fully automated deployment (or repair) of large structures. Or back on earth, large radio towers that are automatically assembled, welded, and even repaired if need be. The possibilities are amazing.

To see the Structure-Reconfiguring Robot in action and to learn a bit more about how it works, check out the video after the break.

Continue reading “Machine Metabolism: Structure-Reconfiguring Robots”

Hovercraft Plane?

[Rudy Heeman] has been working in his garage on what we may consider a new class of vehicle. It’s a hovercraft —  but it also has wings.

That’s right, you drive it on ground, water, and you can even take flight with it! However, it’s far from a new idea. After doing some digging it appears the first type of this vehicle was actually tested back in 1996 by Universal Hovercraft — a quick peruse of their site reveals you can even buy your own kits to make one! Regardless of where it came from, or who made one first, it’s a brilliantly fun concept, and would be a blast to fly. Oh and you don’t even need a pilot’s license, it’s considered a boat and follows the same rules and regulations for boating.

Stick around after the break to see one in action! Now all we need to do is figure out how to combine one of these with a Delorean Hovercraft!

Continue reading “Hovercraft Plane?”

LED Blinds Turn Windows Into Displays

[Dinofizz] is almost done with his vertical LED blinds. The build makes use of 768 diffused white LEDs (10mm size), at a resolution of 48×16, and it only requires one 16-channel LED driver (a MBI5026), which makes use of 3x 4-to-16 demultiplexers. Did we mention it has 16 shades of grayscale too?

At the heart of the many piles of painstakingly soldered wires is an ATmega644A microcontroller which takes care of interpreting the data for the display. He didn’t write the firmware himself though, that credit goes to [Jay Clegg] who does some pretty cool work with Evil Mad Science’s Peggy 2.0 LED driver.

What we really have to admire is the amount of effort he put into this project. He used custom PCBs to daisy chain the blinds together, 300 feet of 16-way ribbon cable, and approximately 4000 individual solder joints! You’d think there would have been an easier way!

Making use of his high rise windows, he now has the ability to broadcast messages for the world to see. After the break check out the video of them in action!

Continue reading “LED Blinds Turn Windows Into Displays”