Interference Scanner with Clear Instructions

Meticulous. Thorough. Exacting. These are all words we’d use to describe this video by [BrendaEM] about her Homemade 3D Optical Interference Scanner which can be seen after the break. The scanner uses 3D-printed parts and repurposed materials you might find lying around in your spare parts bin. An old optical drive tray acts to move the laser-wielding sled while a stripped-out webcam is an optical sensor. Links to relevant files such as 3D models and Arduino sketches will be found in the video’s author section.

The principle of operation is demonstrated with a water analog in the video at 2:00 with waves in a plastic container. By creating two small apertures between a light source and a sensor, it’s possible to measure the light waves which make it through. [BrendaEM] uses some powerful visualization software to convert her samples into 3D models which look really cool and simultaneously demonstrate the wave nature of light.

On the left side of her device are the control electronics which don’t need any special coatings since light won’t pass over this area. For the right side, where coherent light is measured, to borrow a Rolling Stones lyric: no colors anymore, I want them to turn black. Even the brass strips with apertures are chemically darkened.

Most of the laser hacks here use lasers rather than measure them, like this Laser Clock and a Laser Projector.

Continue reading “Interference Scanner with Clear Instructions”

A Passive Mixer’s Adventure Through Product Development

The year was 2014, and KORG’s volca line of pint-sized synthesizers were the latest craze in the music world. Cheap synths and drum machines were suddenly a reality, all in a backpack-friendly form factor. Now practically anyone could become an electronic music sensation!

I attended a jam with friends from my record label, and as was the style at the time, we all showed up with our latest and greatest gear. There was the microKORG, a MiniNova, and a couple of guitars, but all attention was on the volcas, which were just so much fun to pick up and play with.

There was just one problem. Like any game-changing low-cost hardware, sacrifices had been made. The volcas used 3.5mm jacks for audio and sync pulses, and the initial lineup came with a bassline, lead, and drum synth. Syncing was easy, by daisy chaining cables between the boxes, but if you wanted to record or mix, you’d generally need to stack adapters to get your signals in a more typical 6.5mm TS format used by other music hardware.

After mucking around, I did some research on what other people were doing. Most were suffering just like we were, trying to patch these little machines into full-sized mixing desks. It seemed like overkill — when you just want to muck around, it’s a bit much to drag out a 24 channel powered mixer. I wanted a way to hook up 3 of these machines to a single set of headphones and just groove out.

To solve this problem, we needed a mixer to match the philosophy of the volcas; simple, accessible, and compact. It didn’t need to be gold-plated or capable of amazing sonic feats, it just had to take a few 3.5mm audio sources, and mix them down for a pair of headphones.

I’d heard of people using headphone splitters with mixed results, and it got me thinking about passive mixing. Suddenly it all seemed so clear — I could probably get away with a bunch of potentiometers and some passives and call it a day! With a friend desperate to get their hands on a solution, I decided to mock up a prototype and took it round to the studio to try out.

Continue reading “A Passive Mixer’s Adventure Through Product Development”

NFC Enabled Business Card

[Sjaak] is back at it again with the cool PCB business cards, this time alleviating the burden to physically type his contact information into your phone. But NFC isn’t the only cool thing on this PCB – as always, his aesthetics don’t disappoint.

When we see [Sjaak’s] card, the future seems to be the now – not only do we have business cards that can take our pulse, we have business cards that actively help facilitate the exchange of contact information. I know what you’re thinking. “Business cards made of paper do that already.” That’s true if you read them. You have to physically remember you have the card (aka not put it through the wash), and, if you’re like most folks, you’ll ultimately enter the information into your cell phone’s contact list. Why not skip the whole reading thing? You know, just zap your contact information into the contact list of people automatically?

Maybe this is exactly what [Sjaak] thought when he built his NFC enabled business card. Maybe not. Regardless, [Sjaak’s] card is beautiful – both in implementation and aesthetics. Powered by “a nice little NFC EEPROM from NXP”, (the NT3H1101) the business card even has an energy harvesting mode. Moreover, one can interact with the card via four buttons and an LED. The LED informs the user what mode the card is currently in, and the buttons choose which URL is sent to users via NFC. To add icing to the cake, the back of the PCB is decked out via [Sjaak’s] custom full-color decal process we covered back in August.

As great as it looks, the card still needs some improvement. “I still need to tackle the sharp and protruding components on the front, which will ruin your wallet.” But, in our eyes, the card is surely on its way to greatness, and we look forward to seeing its final form. However, if you’re anything like us, you might want to see some other rad PCB business cards while you wait. If that’s the case, we recommend this logic based finite machine and this card made by a hackaday author.

Alas, Poor Yorick! He Hath Not Amazon Prime

If you are looking around for a Halloween project, you might consider The Yorick Project from [ViennaMike]. As you can see in the video below, it marries a Raspberry Pi acting as an Amazon Alexa with an animatronic skull.

This isn’t the most technically demanding project, but it has a lot of potential for further hacking. The project includes a USB microphone, a servo controller, and an audio servo driver board. It looks like the audio servo board is controlling the jaw movement and based on the video, we wondered if you might do better running it completely in software.

Continue reading “Alas, Poor Yorick! He Hath Not Amazon Prime”