The MorningRod Wants Your Mornings Easier, Not Harder

Curtains are about as simple as household devices get, but they can be remarkably troublesome to automate. Everyone’s window treatments are slightly different, which frustrates a standardized solution. [dfrenkel] has a passion for DIY and wanted his mornings flooded with sunlight for more peaceful awakenings, so the MorningRod Smart Curtain Rod was born.

Replacing the curtain rod with aluminum extrusion and 3D printed fixtures goes a long way towards standardizing for automation.

MorningRod’s design takes advantage of affordable hardware like aluminum extrusions and 3D printed parts to create a system that attempts to allow users to keep their existing curtains as much as possible.

The curtain rod is replaced with aluminum extrusion. MorningRod borrows ideas from CNC projects to turn the curtain rod into a kind of double-ended linear actuator, upon which the curtains are just along for the ride. An ESP32 serves as the brains while a NEMA17 stepper motor provides the brawn. The result is a motorized curtain opening and closing with a wireless interface that can be easily integrated into home automation projects.

[dfrenkel] is offering a kit, but those who would prefer to roll their own should check out the project page on Thingiverse.

Military Gliders Are Making A Comeback, This Time In Unmanned Form

Sun Tzu said, “The line between disorder and order lies in logistics.” This is as true in the modern world as it was 2500 years ago, and logistics have helped win and lose many wars and battles over the centuries. To this end, Logistical Gliders Inc. is developing one-time use, unmanned delivery gliders, for the US Military.

Reminiscent of the military gliders used in WW2, the gliders are designed to be dropped from a variety of aircraft, glide for up to 70 miles and deliver supplies to troops in the field. Specifically intended to be cheap enough to be abandoned after use, the gliders are constructed from plywood, a few aluminum parts for reinforcement and injection molded wing panels. There are two versions of the glider, both with huge payloads. The LG-1K, with a payload capacity of 700 lbs/320 kg and the larger LG-2K, with a payload capacity of 1,600 lbs/725 kg. Wings are folded parallel to the fuselage during transport and then open after release with the help of gas springs. The glider can either do a belly landing in an open area or deploy a parachute from the tail at low altitude to land on the crushable nose.

Gliders like these could be used to deliver supplies after natural disasters, or to remote locations where road travel is difficult or impossible while reducing the flight time required for conventional aircraft. Powered UAVs could even be used to carry/tow a glider to the required release point and then return much lighter and smaller, reducing the required fuel or batteries.

Drones are already used to deliver medical supplies in Rwanda and Ghana, and it’s possible to build your own autonomous unmanned glider. Check out the video after the break to see the big boys in action. Continue reading “Military Gliders Are Making A Comeback, This Time In Unmanned Form”

Gutted Hoverboard Becomes Formidable Track-Drive Robot

When “hoverboards” first came out, you may have been as disappointed as we were that they did not even remotely fulfill the promises of Back to the Future II. Nothing more than a fancified skateboard, hoverboards are not exactly groundbreaking technology. That doesn’t mean they’re not useful platforms for hacking, though, as this hoverboard to track-propelled robot tank conversion proves.

Most of the BOM for this build came from the junk bin – aluminum extrusions, brackets, and even parts cannibalized from a 3D-printer. But as [pasoftdev] points out, the new-in-box hoverboard was the real treasure trove of components. The motors, the control and driver electronics, and the big, beefy battery were all harvested and mounted to the frame. To turn the wheels into tracks, [pasoftdev] printed some sprockets to fit around the original tires. The tracks were printed in sections and screwed to the wheels. Idlers were printed in sections too, using central hubs and a clever method for connecting everything together into a sturdy wheel. Printed tank tread links finished the rolling gear eventually; each of the 34 pieces took almost five hours to print. The dedication paid off, though, as the 15-kg tank is pretty powerful; the brief video below shows it towing an office chair around without any problems.

We noticed that [pasoftdev] found the assembly of the tread links a bit problematic. These 3D-printed links that are joined by Airsoft BBs might make things a little easier next time.

Continue reading “Gutted Hoverboard Becomes Formidable Track-Drive Robot”

Get Dirty In Your Quest For Power!

A fascinating oddity in the list of potential alternative power sources is the microbial fuel cell, in which the chemical reactions of micro-organisms digesting their food are harnessed to harvest electrons and thus generate electrical current. We’d like to know more, so [Williamolyolson]’s soil microbial fuel cell is a particularly interesting glimpse into this field.

In this type of cell, an anode is placed at the bottom of a container of anaerobic wet soil medium laced with biomass to provide a food source for the bacteria, and a cathode is placed on the top of the medium exposed to air. The cell in this project appears to be a plastic coffee tub, and the electrodes are copper pan scourers. Unlike a chemical battery they do not need to be different materials and they themselves are not part of the chemistry of the cell, instead, they serve to collect and return the electrons to the cell.

The project logs detail a series of time-series measurements and experiments with placement of the cathode. Yield seems to be in the region of 200mV at about 1mA, though peaks as high as 400mV have been seen. It’s clear that this is not a cell that will replace your grid hook-up any time soon, but it still retains a lot of possibilities for use in micropower applications. There has been plenty of work in the field of micropower harvesting using other sources such as small solar cells, and this has the advantage of microbe-laden dirt being ubiquitous and free.

A couple of previous MFCs we’ve brought you include this multi-cell design said to be capable of charging a phone, and this cell that also supports a fish.