On The Original Punched Cards

If you mention punch cards to most people, they’ll think of voting. If you mention it to most older computer people, they’ll think of punching programs for big computers on cards. But punched cards are much older than that, and [Nichole Misako Nomura] talks about how the original use was to run looms and knitting machines and — thanks the Internet Archive — you can still find old cards to drive modern machines.

According to the post, a dedicated group of people own old commercial knitting machines, and with some work, they can use archived punch cards with patterns that predate the computerized world. The Jacquard loom was famously the first machine to use cards like this, and it is no secret that they were the inspiration for Hollerith’s use of cards in the census, which would eventually lead to the use of cards for computing.

Continue reading “On The Original Punched Cards”

Automatic Pill Dispenser Is Cheap And Convenient

If you’re taking any medication, you probably need to take it in a certain dose on a certain schedule. It can quickly become difficult to keep track of when you’re taking multiple medications. To that end, [Mellow_Labs] built an automated pill dispenser to deliver the right pills on time, every time.

The pill dispenser is constructed out of 3D printed components. As shown, it has two main bins for handling two types of pills, controlled with N20 gear motors. The bins spin until a pill drops through a slot into the bottom of the unit, with the drop detected by a piezo sensor. It uses a Beetle ESP32 as the brains of the operation, which is hooked up with a DS1307 real-time clock to ensure it’s dosing out pills at the right time. It’s also wired up with a DRV8833 motor driver to allow it to run the gear motors. The DRV8833 can run up to four motors in unidirectional operation, so you can easily expand the pill dispenser up to four bins if so desired.

We particularly like how the pill dispenser is actually controlled — [Mellow_Labs] used the ESP32 to host a simple web interface which is used for setting the schedule on which each type of pill should be dispensed.

We’ve featured some other pill dispenser builds before, too.

Continue reading “Automatic Pill Dispenser Is Cheap And Convenient”

DIY Microwave Crucibles

You know the problem. You are ready to melt some metal in your microwave oven, and you don’t have any crucibles. Not to worry. [Shake the Future] will show you how to make your own. All you need is some silicon carbide, some water glass (sodium silicate), and some patience.

The crucible takes the shape of a glass container. Don’t get too attached to it because the glass will break during the crucible construction. You can also use 3D-printed forms.

Continue reading “DIY Microwave Crucibles”

Will Embodied AI Make Prosthetics More Humane?

Building a robotic arm and hand that matches human dexterity is tougher than it looks. We can create aesthetically pleasing ones, very functional ones, but the perfect mix of both? Still a work in progress. Just ask [Sarah de Lagarde], who in 2022 literally lost an arm and a leg in a life-changing accident. In this BBC interview, she shares her experiences openly – highlighting both the promise and the limits of today’s prosthetics.

The problem is that our hands aren’t just grabby bits. They’re intricate systems of nerves, tendons, and ridiculously precise motor control. Even the best AI-powered prosthetics rely on crude muscle signals, while dexterous robots struggle with the simplest things — like tying shoelaces or flipping a pancake without launching it into orbit.

That doesn’t mean progress isn’t happening. Researchers are training robotic fingers with real-world data, moving from ‘oops’ to actual precision. Embodied AI, i.e. machines that learn by physically interacting with their environment, is bridging the gap. Soft robotics with AI-driven feedback loops mimic how our fingers instinctively adjust grip pressure. If haptics are your point of interest, we have posted about it before.

The future isn’t just robots copying our movements, it’s about them understanding touch. Instead of machine learning, we might want to shift focus to human learning. If AI cracks that, we’re one step closer.

 

PCB Design Review: M.2 SSD Splitter

Today’s PCB design review is a board is from [Wificable]. iI’s a novel dual-SSD laptop adapter board! See, CPUs and chipsets often let you split wide PCIe links into multiple smaller width links. This board relies on a specific laptop with a specific CPU series, and a BIOS mod, to put two M.2 NVMe SSDs into a single SSD slot of a specific series’ laptop.

This board has two crucial factors – mechanical compatibility, and electrical function. Looking into mechanics, it’s a 0.8 mm thick PCB that plugs into a M.2 socket, and it has sockets for two SSDs on it – plenty of bending going on. For electronics, it has a PCIe REFCLK clock buffer, that [Wificable] found on Mouser – a must have for PCIe bifurcation, and a must-work for this board’s core! Apart from that, this is a 4-layer board, it basically has to be for diffpairs to work first-try.

Of course, the clock buffer chip is the main active component and the focus of the board, most likely mistakes will happen there – let’s look at the chip first.

Continue reading “PCB Design Review: M.2 SSD Splitter”

Safer And More Consistent Woodworking With A Power Feeder

Woodworking tools like table- and bandsaws are extremely useful and versatile, but they generally have the distinct disadvantage that they make no distinction between the wood and the digits of the person using the machine. While solutions like SawStop were developed to make table saws sense flesh and try to not cut it, [James Hamilton] makes a compelling argument in a recent video for the use of power feeders.

These devices are placed above the table and feed the material into the machine without having to get one’s digits anywhere near the machine. Other than the safety aspect, it also means that the material is always fed in at a consistent speed, which is great when using it with a router table. Most of these power feeders are portable, so a single unit can be moved from the table saw to the router table, with [James] showing how he is using MagSwitch magnetic clamps to ease the process of moving between machines.

With the 1/8 HP mini power feeder that he’s using, the 4 magnetic clamps appear to be enough even when cutting hardwood on the table saw, but it’s important to make sure the power feeder doesn’t twist while running, for obvious safety reasons. On [James]’s wish list is a way to make moving the power feeder around more efficient, because he only has a single one, for cost reasons.

Although these power feeders cost upwards of $1,000, the benefits are obvious, including when running larger jobs. One might conceivably also DIY a solution, as they appear to be basically an AC motor driving a set of wheels that grip the material while feeding. That said, do you use a power feeder, a SawStop table saw or something else while woodworking?

Continue reading “Safer And More Consistent Woodworking With A Power Feeder”