Try an experiment. Next time you are in a room with someone, ask them to name everything in the room. Only certain kinds of people will say “air” or “light.” For most people, those are just givens, and you don’t think about them unless, for some reason, you don’t have them. Resistance is like that in electronics. You use it constantly, but do you ever think much about what it is? For a resistor, the value in ohms really represents the slope of the line that describes the amount of voltage you’ll see across the component when it carries a certain amount of current. For resistors, that slope is — at least in theory — constant and positive. But [Void Electronics] made a video exploring negative resistance, and it is worth watching, below.
If you haven’t seen negative resistance before, you might wonder how that is possible. Ohm’s law is just a shorthand for calculating the slope of a graph with voltage on the Y axis and current on the X axis. It works because the voltage and current are always zero at the same time, so the slope is (V-0)/(I-0), and we just shorten that to the normal Ohm’s law equation.
But not everything has a linear response to current. Some devices will have different slopes over different current regions. And sometimes that slope can be negative, meaning that an increase in current through the device will cause it to drop less voltage. Of course, this is usually just over a narrow range and, as [Void] points out, most devices don’t specify that parameter on their data sheets. In fact, some transistors won’t even work in the circuit.
The circuit in question in the video below the break is an odd one. It uses two resistors, an LED, and a transistor. But the transistor’s base is left disconnected. No 555 needed. How does it work? Watch the video and you’ll see. There’s even a curve tracer if you don’t like to see hand-drawn graphs.
We’ve looked at negative resistance more than once. There are a few exotic devices, like tunnel diodes, that are explicitly used for the negative resistance property. When the gas in a neon bulb breaks down, you get the same effect. Continue reading “Positive Results With Negative Resistance”