Alexa, Remind Me Of The First Time Your Product Category Failed

For the last few years, the Last Great Hope™ of the consumer electronics industry has been voice assistants. Alexas and Echos and Google Homes and Facebook Portals are all the rage. Over one hundred million Alexa devices have been sold, an impressive feat given that there are only about 120 Million households in the United States, and a similar number in Europe. Look to your left, look to your right, one of you lives in a house with an Internet connected voice assistant.

2018 saw a huge explosion of Internet connected voice assistants, in sometimes bizarre form factors. There’s a voice controlled microwave, which is great if you’ve ever wanted to defrost a chicken through the Internet. You can get hardware for developing your own voice assistant device. 2019 will be even bigger. Facebook is heavily advertising the Facebook Portal. If you haven’t yet deleted your Facebook account, you can put the Facebook Portal on your kitchen counter and make video calls with your family and friends through Facebook Messenger. With the Google Home Hub and a Nest doorbell camera, you too can be just like Stu Pickles from Rugrats.

This is not the first time the world has been enamored with Internet-connected assistants. This is not the first time the consumer electronics industry put all their hope into one product category. This has happened before, and all those devices failed spectacularly. These were the Internet appliances released between 1999 and 2001: the last great hurrah of the dot-com boom. They were dumb then, and they’re dumb now.

Continue reading “Alexa, Remind Me Of The First Time Your Product Category Failed”

The Greatest Computer Ever Now Gets A New, Injection Molded Clear Case

The Macintosh SE/30 is the greatest computer ever made. It was a powerhouse when it was launched almost exactly thirty years ago today. You could stuff 128 Megabytes of RAM into it, an absolutely ludicrous amount of RAM for 1989. You could put Ethernet in it. You could turn the 1-bit black or white internal display into an 8-bit grayscale display. I think there was a Lisp card for it. These were just the contemporaneous hacks for the SE/30. Now, people are actively developing for this machine and putting Spotify on it. There’s a toolbar extension for Macs of this era that will let you connect to a WiFi network. You’ll be hard pressed to find a computer that still has a fanbase this big thirty years after release.

Now, there’s a project to create new injection molded cases for the Mac SE/30 (and the plain ‘ol SE). These cases will be clear, just like Apple prototypes of the era. It’s also one of the most difficult injection molding projects retrocomputer enthusiasts have ever taken up.

Over the years, we’ve seen some interesting projects in the way of creating new plastic cases for old computers. The most famous is perhaps the remanufacturing of Commodore 64C cases. Instead of a purely community-driven project, this was an accident of history. The story goes that one guy, [Dallas Moore], went to an auction at an injection molding factory. The owner mentioned something about an old computer, and wheels started turning in someone’s head. A Kickstarter later, and everyone who wanted a new C64 case got one. You could get one in translucent plastic to go with the retro aesthetic.

New cases for the Amiga A1200 have also been made thanks to one fan’s Solidworks skills and a Kickstarter campaign. There is, apparently, a market for remanufactured cases for retrocomputers, and it’s just barely large enough to support making new injection molding tooling.

So, about that SE/30. The folks on the 68k Macintosh Liberation Army forums are discussing the possibility of making a new case for the greatest computer Apple will ever make. The hero of this story is [maceffects] who has already modeled the back ‘bucket’ of the SE/30 and printed one out on a filament printer (check out the videos below). This was then printed in clear SLA, and the next step is crowdfunding.

While this isn’t a complete case — a front bezel would be needed to complete the case — it is an amazing example of what the retrocomputing community can do. The total cost to bring this project to fruition would be about $15,000 USD, which is well within what a crowdfunding campaign could take in. Secondary runs could include a translucent Bondi Blue polycarbonate enclosure, but that’s pure speculation from someone who knows what would be the coolest project ever.

Continue reading “The Greatest Computer Ever Now Gets A New, Injection Molded Clear Case”

Hackaday Links Column Banner

Hackaday Links: January 20, 2019

Let’s say you’re an infosec company, and you want some free press. How would you do that? The answer is Fortnite. Yes, this is how you hack Fortnite. This is how to hack Fortnite. The phrase ‘how to hack Fortnite’ is a very popular search term, and simply by including that phrase into the opening paragraph of this post guarantees more views. This is how you SEO.

Lasers kill cameras. Someone at CES visited the AEye booth, snapped a picture of an autonomous car at AEye’s booth, and the LIDAR killed the sensor. Every subsequent picture had a purple spot in the same place. While we know lasers can kill camera sensors, and this is a great example of that, this does open the door to a few questions: if autonomous cars have LIDAR and are covered in cameras, what’s going to happen to the cameras in an autonomous car driving beside another autonomous car? Has anyone ever seen more than one Cruise or Waymo car in the same place at the same time? As an aside, AEye’s company website’s URL is aeye.ai, nearly beating penisland.net (they sell pens on Pen Island) as the worst company URL ever.

This is something I’ve been saying for years, but now there’s finally a study backing me up. Lego is a viable investment strategy. An economist at Russia’s Higher School of Economics published a study, collecting the initial sale price of Lego sets from 1987 to 2015. These were then compared to sales of full sets on the secondary market. Returns were anywhere between 10 and 20% per year, which is crazy. Smaller sets (up to about 100 pieces) had higher returns than larger sets. This goes against my previous belief that a Hogwarts Castle, Saturn V, and UCS Falcon-heavy portfolio would outperform a portfolio made of cheap Lego sets. However, this observation could be tied to the fact that smaller sets included minifig-only packaging, and we all know the Lego minifig market is a completely different ball of wax. The Darth Revan minifig, sold as an exclusive for $3.99 just a few years ago, now fetches $35 on Bricklink. Further study is needed, specifically to separate the minifig market from the complete set market, but the evidence is coming in: Lego is a viable investment strategy, even when you include the 1-2% yearly cost of storing the sets.

Relativity Space got a launchpad. Relativity Space is an aerospace startup that’s building a rocket capable of lobbing my car into Low Earth Orbit with a methalox engine. They’re doing it with 3D printing. [Bryce Salmi], one of the hardware engineers at Relativity Space, recently gave a talk at the Hackaday Superconference about printing an entire rocket. The design is ambitious, but if there’s one device that’s perfectly suited for 3D printing, it’s a rocket engine. There are a lot of nonmachinable tubes going everywhere in those things.

Cloning Knobs For Vintage Testing Equipment

Knobs! Shiny candy-colored knobs! The last stand of skeuomorphism is smart light switches! Everyone loves knobs, but when you’re dealing with vintage equipment with a missing knob, the odds of replacing it are slim to none. That’s what happened to [Wesley Treat] when he picked up a vintage Philco tube tester. The tester looked great, but a single knob for a rotary switch was missing. What to do? Clone some knobs! You only need some resin and a little bit of silicone.

The process of copying little bits of plastic or bakelite is fairly standard and well-tread territory. Go to Michaels or Hobby Lobby, grab some silicone and resin, make a box, put your parts down, cover them in silicone, remove the parts, then put resin in. For simple parts, and parts with flat bottoms like knobs, this works great. However, there’s something weird about the knob on this old Philco tube tester. Firstly, it doesn’t fit a standard 1/4″ shaft — it’s a bit bigger. There’s also no set screw. Instead, this knob has a stamped spring aligning it with the flat part of the D-shaft in this rotary switch. This means a copy of this knob wouldn’t be useful to anyone else, and that no other knob would work with this tube tester.

However, a bit of clever engineering would make a copy of this knob fit the existing switch. Once the resin was cured, [Wesley] drilled out the hole, then sanded a dowel down to fit into the flat of the D-shaft. It took a little kergiggering, but the knob eventually fit onto one of the rotary switches. Not bad for a few bucks in silicone and resin.

You can check out the entire build process below.

Continue reading “Cloning Knobs For Vintage Testing Equipment”

MIDI Association Announces MIDI 2.0 Prototyping

MIDI was introduced at the 1983 NAMM show as a means to connect various electronic instruments together. Since then, our favorite five-pin DIN has been stuffed into Radio Shack keyboards, MPCs, synths, eurorack modules, and DAWs. The standard basically hasn’t changed. Sure, we have MIDI SysEx messages to configure individual components of a MIDI setup, but at its core, MIDI hasn’t changed since it was designed as a current-loop serial protocol for 8-bit microcontrollers running at 1 MHz.

Now, ahead of the 2019 NAMM show, the MIDI Manufacturers Association (MMA) in conjunction with AMEI, Japan’s MIDI Association, are announcing MIDI 2.0. The new features include, “auto-configuration, new DAW/web integrations, extended resolution, increased expressiveness, and tighter timing”. It will retain backwards-compatibility with MIDI 1.0 devices.

The new initiative, like the release of the first MIDI spec, is a joint venture between manufacturers of musical instruments. The company lineup on this press release is as follows: Ableton/Cycling ’74, Art+Logic, Bome Software, Google, imitone, Native Instruments, Roland, ROLI, Steinberg, TouchKeys, and Yamaha.

This is not an official announcement of the MIDI 2.0 specification. This is the ‘prototyping’ phase, where manufacturers implement the MIDI 2.0 spec as envisioned, write some documentation, figure out what the new logo will look like, and design a self-certification process. Prototyping is expected to continue through 2019, when the final MIDI 2.0 spec will be released on the MIDI Association website.

As far as hardware hackers are concerned, there shouldn’t be any change to your existing MIDI implementation, provided you’re not doing anything new. It should be backwards compatible, after all. The new spec will allow for increased range in expression and ‘tighter’ timing, which might be an indication that the baud rate of MIDI (31,250 baud +/- 1%) may change. There’s some interesting things in store for the last old-school physical layer in existence, and we can’t wait to see what comes out of it.

Full Color Dot Matrix Is The Art We Need

Fans of 80s-era computer printing technology are few and far between, but Apple’s ImageWriter II was a beast of a printer. This tractor feed dot-matrix printer is nigh-indestructible. The print quality was actually pretty great. It was loud as hell, which is a mark of quality electromechanical components. It could do color, and color dot-matrix art on tractor feed paper is the aesthetic we need. If you’re not convinced yet, you can also take off the perforations from tractor feed paper and make a cool little paper snake.

[Dandu] isn’t one to let things like serial printers and obsolete color dot matrix ribbons get in his way of creating ImageWriter art. A while ago, he printed off some incredible art using some obsolete equipment, and the results are better than what you would expect.

The process for creating full-color art on a dot-matrix printer was to plug the ImageWriter into an old Mac (an LC III in this case, with 12 MB of RAM). Photoshop (version 3.0!) was used to open a JPEG, and MacPallete II used to send the data to the printer. This isn’t a process that prints all the colors all at once; first the yellow is printed, and the tractor feed paper is brought back to the beginning. Then the magenta is printed, then the cyan, then the black. The single page of art took 20 minutes to print, and you can see a sped-up version of this process below.

Yes, the ImageWriter II can print in full color, but who cares about this now? A few people apparently — a company is now remanufacturing ImageWriter II color ribbons — opening the door to retro art for all. Yes, that ImageWriter in your basement still works, so let’s see what you can do with it.

Continue reading “Full Color Dot Matrix Is The Art We Need”

Unobtanium Bezels Finally Modeled For 3D Printing

In 1991, Apple released the Quadra line of computers, named after their utilization of the new Motorola 68040 CPU. The Quadra line initially consisted of two models, the Quadra 700 and the Quadra 900. These two models, and the Quadra 950, released as a slight upgrade to the 900, were the peak of performance. You could conceivably load these machines up with 256 Megabytes of RAM, in an era where hard drives hovered around 80 Megabytes. This much RAM would cost as much as a house. These were powerhouses, the first ProTools workstations, and they ran Jurassic Park. If you wanted peak performance in the early 90s, you got a Quadra.

The Quadra 900 and 950 were tower computers, and there were options for floppy, Zip drives, Bernoulli drives, and a CD-ROM drive. They were introduced a little before the ‘multimedia’ hubub, and right now, the plastic bezel for the CD-ROM option is an absurdly expensive piece of plastic. People have paid $150 for an original CD-ROM bezel. Seems like the perfect application of 3D printing, doesn’t it? That’s exactly what [360alaska] over on the 68k Macintosh Liberation Army forms did. The unobtanium bezel can now be sent off to Shapeways.

This project is a continuation of a thread where various forum members shared their .STLs for random bits of Apple plastic, ranging from rubber feet for PowerBooks to the clip-on ‘programmer’s switch’ for the Macintosh SE. The crowning achievement of this community endeavour is the Quadra 950 CD-ROM bezel. There are a few varieties, ranging from one that fits a standard 5 1/4″ drive, to a nearly exact replica of the official Apple offering for their official drive. All the files are there for the downloadin’.

Printing these bezels will be a bit of a challenge for a filament-based printer, but resin printers are getting cheap and Shapeways is always there for you. Painting to match the brominated patina of old plastic is also a challenge, but the forum members have had some success with off-the-shelf spray paints.