Retrotechtacular: Yamming CRT Yokes

Those of us who worked in TV repair shops, back when there was such a thing, will likely remember the cardinal rule of TV repair: Never touch the yoke if you can help it. The complex arrangement of copper wire coils and ferrite beads wrapped around a plastic cone attached to the neck of the CRT was critical to picture quality, and it took very little effort to completely screw things up. Fixing it would be a time-consuming and frustrating battle with the cams, screws, and spacers that kept the coils in the right orientation, both between themselves and relative to the picture tube. It was best to leave it the way the factory set it and to look elsewhere for solutions to picture problems.

But how exactly did the factory set up a deflection yoke? We had no idea at the time, only learning just recently about the wonders of automated deflection yoke yamming. The video below was made by Thomson Consumer Electronics, once a major supplier of CRTs to the television and computer monitor industry, and appears directed to its customers as a way of showing off their automated processes. They never really define yamming, but from the context of the video, it seems to be an industry term for the initial alignment of a deflection yoke during manufacturing. The manual process would require a skilled technician to manipulate the yoke while watching a series of test patterns on the CRT, slowly tweaking the coils to bring everything into perfect alignment.

Continue reading “Retrotechtacular: Yamming CRT Yokes”

A Unique Linear Position Sensor Using Magnetostriction

To the extent that you’re familiar with magnetostriction, you probably know that it’s what makes big transformers hum, or that it’s what tips you off if you happen to walk out of a store without paying for something. But magnetostriction has other uses, too, such as in this clever linear position sensor.

Magnetostriction is just the tendency for magnetic materials to change size or shape slightly while undergoing magnetization, thanks to the tiny magnetic domains shifting within the material while they’re aligning. [Florian B.]’s sensor uses a side effect of magnetostriction known as the Wiedenmann effect, which causes a wire to experience a twisting force if a current pulse is applied to it in a magnetic field. When the current pulse is turned off, a mechanical wave travels along the wire to a coil, creating a signal. The difference in time between sending the pulse and receiving the reflection can be used to calculate the position of the magnet along the wire.

To turn that principle into a practical linear sensor, [Florian B.] used nickel wire stretched tightly down the middle of a PVC tube. At one end is a coil of copper magnet wire, while the other end has a damper to prevent reflections. Around the tube is a ring-shaped cursor magnet, which can move up and down the tube. An exciter circuit applies the current pulse to the wire, and an oscilloscope is used to receive the signal from the wire.

This project still appears to be in the prototype phase, as evidenced by the Fischertechnik test rig. [Florian] has been working on the exciter circuit most recently, but he’s done quite a bit of work on optimizing the cursor magnet and the coil configuration, as well as designs for the signal amplifier. It’s a pretty neat project, and we’re looking forward to updates.

If you need a deeper dive into magnetostriction, [Ben Krasnow] points the way.

Integrated Micro Lab Keeps Track Of Ammonia In The Blood

We’ve all got our health-related crosses to bear, and even if you’re currently healthy, it’s only a matter of time before entropy catches up to you. For [Markus Bindhammer], it caught up to him in a big way: liver disease, specifically cirrhosis. The disease has a lot of consequences, none of which are pleasant, like abnormally high ammonia concentration in the blood. So naturally, [Markus] built an ammonia analyzer to monitor his blood.

Measuring the amount of ammonia in blood isn’t as straightforward as you think. Yes, there are a few cheap MEMS-based sensors, but they tend to be good only for qualitative measurements, and other solid-state sensors that are more quantitative tend to be pretty expensive since they’re mostly intended for industrial applications. [Marb]’s approach is based on the so-called Berthelot method, which uses a two-part reagent. In the presence of ammonia (or more precisely, ammonium ions), the reagent generates a dark blue-green species that absorbs light strongly at 660 nm. Measuring the absorbance at that wavelength gives an approximation of the ammonia concentration.

[Marb]’s implementation of this process uses a two-stage reactor. The first stage heats and stirs the sample in a glass tube using a simple cartridge heater from a 3D printer head and a stirrer made from a stepper motor with a magnetic arm. Heating the sample volatilizes any ammonia in it, which mixes with room air pumped into the chamber by a small compressor. The ammonia-laden air moves to the second chamber containing the Berthelot reagent, stirred by another stepper-powered stir plate. A glass frit diffuses the gas into the reagent, and a 660-nm laser and photodiode detect any color change. The video below shows the design and construction of the micro lab along with some test runs.

We wish [Markus] well in his journey, of course, especially since he’s been an active part of our community for years. His chemistry-related projects run the gamut from a homebrew gas chromatograph to chemical flip flops, with a lot more to boot.

Continue reading “Integrated Micro Lab Keeps Track Of Ammonia In The Blood”

Hackaday Links Column Banner

Hackaday Links: February 16, 2025

Just when you thought the saga of the Bitcoin wallet lost in a Welsh landfill was over, another chapter of the story appears to be starting. Regular readers will recall the years-long efforts of Bitcoin early adopter James Howells to recover a hard drive tossed out by his ex back in 2013. The disk, which contains a wallet holding about 8,000 Bitcoin, is presumed to be in a landfill overseen by the city council of Newport, which denied every request by Howells to gain access to the dump. The matter looked well and truly settled (last item) once a High Court judge weighed in. But the announcement that the Newport Council plans to cap and close the landfill this fiscal year and turn part of it into a solar farm has rekindled his efforts.

Howells and his investment partners have expressed interest in buying the property as-is, in the hopes of recovering the $780 million-ish fortune. We don’t think much of their odds, especially given the consistently negative responses he’s gotten over the last twelve years. Howells apparently doesn’t fancy his odds much either, since the Council’s argument that closing the landfill to allow him to search would cause harm to the people of Newport was seemingly made while they were actively planning the closure. It sure seems like something foul is afoot, aside from the trove of dirty diapers Howells seeks to acquire, of course.

Continue reading “Hackaday Links: February 16, 2025”

Scrapyard Vacuum Dehydrator Sucks The Water From Hydraulic Oil

Anyone who has ever had the misfortune of a blown head gasket knows that the old saying “oil and water don’t mix” is only partially true. When what’s coming out of the drain plug looks like a mocha latte, you know you’re about to have a very bad day.

[SpankRanch Garage] recently found himself in such a situation, and the result was this clever vacuum dehydrator, which he used to clean a huge amount of contaminated hydraulic fluid from some heavy equipment. The machine is made from a retired gas cylinder welded to a steel frame with the neck pointing down. He added a fill port to the bottom (now top) of the tank; as an aside, we had no idea the steel on those tanks was so thick. The side of the tank was drilled and threaded for things like pressure and temperature gauges as well as sight glasses to monitor the process and most importantly, a fitting for a vacuum pump. Some valves and a filter were added to the outlet, and a band heater was wrapped around the tank.

To process the contaminated oil, [Spank] glugged a bucket of forbidden milkshake into the chamber and pulled a vacuum. The low pressure lets the relatively gentle heat boil off the water without cooking the oil too badly. It took him a couple of hours to treat a 10-gallon batch, but the results were pretty stark. The treated oil looked far better than the starting material, and while it still may have some water in it, it’s probably just fine for excavator use now. The downside is that the vacuum pump oil gets contaminated with water vapor, but that’s far easier and cheaper to replace that a couple hundred gallons of hydraulic oil.

Never doubt the hacking abilities of farmers. Getting things done with what’s on hand is a big part of farm life, be it building a mower from scrap or tapping the power of the wind.

Continue reading “Scrapyard Vacuum Dehydrator Sucks The Water From Hydraulic Oil”

Octet Of ESP32s Lets You See WiFi Like Never Before

Most of us see the world in a very narrow band of the EM spectrum. Sure, there are people with a genetic quirk that extends the range a bit into the UV, but it’s a ROYGBIV world for most of us. Unless, of course, you have something like this ESP32 antenna array, which gives you an augmented reality view of the WiFi world.

According to [Jeija], “ESPARGOS” consists of an antenna array board and a controller board. The antenna array has eight ESP32-S2FH4 microcontrollers and eight 2.4 GHz WiFi patch antennas spaced a half-wavelength apart in two dimensions. The ESP32s extract channel state information (CSI) from each packet they receive, sending it on to the controller board where another ESP32 streams them over Ethernet while providing the clock and phase reference signals needed to make the phased array work. This gives you all the information you need to calculate where a signal is coming from and how strong it is, which is used to plot a sort of heat map to overlay on a webcam image of the same scene.

The results are pretty cool. Walking through the field of view of the array, [Jeija]’s smartphone shines like a lantern, with very little perceptible lag between the WiFi and the visible light images. He’s also able to demonstrate reflection off metallic surfaces, penetration through the wall from the next room, and even outdoor scenes where the array shows how different surfaces reflect the signal. There’s also a demonstration of using multiple arrays to determine angle and time delay of arrival of a signal to precisely locate a moving WiFi source. It’s a little like a reverse LORAN system, albeit indoors and at a much shorter wavelength.

There’s a lot in this video and the accompanying documentation to unpack. We haven’t even gotten to the really cool stuff like using machine learning to see around corners by measuring reflected WiFi signals. ESPARGOS looks like it could be a really valuable tool across a lot of domains, and a heck of a lot of fun to play with too.

Continue reading “Octet Of ESP32s Lets You See WiFi Like Never Before”

A Guide To Making The Right Microcontroller Choice

Starting a new microcontroller project can be pretty daunting. While you have at least a rough idea of where you want to end up, there are so many ways to get there that you can get locked into “analysis paralysis” and never get the project off the ground. Or arguably worse, you just throw whatever dev board you have in the junk bin and deal with the consequences.

While it’s hard to go wrong with relying on a familiar MCU and toolchain, [lcamtuf] argues in this recent guide to choosing microcontrollers that it’s actually not too much of a chore to make the right choice. Breaking the microcontroller universe down into three broad categories makes the job a little easier: simple process control, computationally intensive tasks, and IoT products. Figuring out where your project falls on that spectrum narrows your choices considerably.

For example, if you just need to read some sensors and run a few servos or solenoids, using something like a Raspberry Pi is probably overkill. On the other hand, a Pi or other SBC might be fine for something that you need wireless connectivity. We also appreciate that [lcamtuf] acknowledges that intangible considerations sometimes factor in, such as favoring a new-to-you MCU because you’ll get experience with technology you haven’t used before. It might not override technical considerations by itself, but you can’t ignore the need to stretch your wings once in a while.

There’s nothing earth-shattering here, but we enjoy think pieces like this. It’s a bit like [lcamtuf]’s recent piece on rethinking your jellybean op-amps.