KiCad 4.0 Is Released

If you’re a KiCad user, as many of us here at Hackaday are, you’ll be elated to hear that KiCad 4.0 has just been released! If you’re not yet a KiCad user, or if you’ve given it a shot in the past, now’s probably a good time to give it a try. (Or maybe wait until the inevitable 4.0.1 bugfix version comes out.)

If you’ve been using the old “stable” version of KiCad (from May 2013!), you’ve got a lot of catching-up to do.

The official part footprint libraries changed their format sometime in 2014, and are all now hosted on GitHub in separate “.pretty” folders for modularity and ease of updating. Unfortunately, this means that you’ll need to be a little careful with your projects until you’ve switched all the parts over. The blow is softened by a “component rescue helper” but you’re still going to need to be careful if you’re still using old schematics with the new version.

The most interesting change, from a basic PCB-layout perspective, is the push-and-shove router. We’re looking for a new demo video online, but this one from earlier this year will have to do for now. We’ve been using various “unstable” builds of KiCad for the last two years just because of this feature, so it’s awesome to see it out in an actual release. The push-and-shove router still has some quirks, and doesn’t have all the functionality of the original routers, though, so we often find ourselves switching back and forth. But when you need the push-and-shove feature, it’s awesome.

If you’re doing a board where timing is critical, KiCad 4.0 has a bunch of differential trace and trace-length tuning options that are something far beyond the last release. The 3D board rendering has also greatly improved.

Indeed, there are so many improvements that have been made over the last two and a half years, that everybody we know has been using the nightly development builds of KiCad instead of the old stable version. If you’ve been doing the same, version 4.0 may not have all that much new for you. But if you’re new to KiCad, now’s a great time to jump in.

We’ve covered KiCad hacks before, and have another article on KiCad add-on utilities in the pipeline as we write this. For beginners, [Chris Gammell]’s tutorial video series is still relevant, and is a must-watch.

Thanks [LC] for the newsworthy tip!

ESP8266 BASIC WiFi Thermostat Is Child’s Play

If you’ve read any of our posts in the last couple years, you’ll have noted that our community is stoked about bringing the Internet to their devices on the cheap with the ESP8266 modules. Why? This forum post that details making a WiFi thermostat really brings the point home: it’s so easy and cheap to build Internet-enabled devices that you almost can’t resist.

When the ESP8266 first came out, there very little documentation, much less code support. Since then Espressif’s SDK has improved, the NodeMCU project brought Lua support, and there’s even Arduino support. Most recently, BASIC has been added to the ESP stable, and that really lowers the barriers to creating a simple WiFi widget, like the thermostat example here that uses a Dallas DS18B20 temperature sensor and an LED as a stand-in for the heater element.

The hardware for this project, a re-build of this demo code from the ESP8266 BASIC docs, is nothing more than a few off-the-shelf parts soldered together. No schematic required.

What makes the project work behind the scenes is some clever code-reuse by [Rotohammer] on the ESP8266 forums. Essentially, he wrapped the Arduino’s one-wire library, giving it simple BASIC bindings. Then all that’s left for the BASIC coder is to read the value and print it out to a webpage.

There’s all sorts of details swept under the rug here, and those of you out there who are used to bare-metal programming will surely huff and puff. But there’s a time for building your own injection-molder to make DIY Lego bricks, and there’s a time to just put blocks together. This project, and the BASIC interpreter that made it possible, demonstrate how much joy someone can get from just putting the parts together.

Streaming Video On An Apple IIc

Some of the projects we feature solve a problem. Others just demonstrate that they can be done. We’re guessing that it’s the latter that motivated [Joshua Bell] to write a VNC client for an Apple IIc. To fully appreciate how insane this is, have a look at the video below the break.

There’s more than one thing amazing about this hack. Somehow, [Joshua]’s VNC program runs entirely in the memory of an Apple IIc, as he demonstrates at the beginning of the video by downloading all of the code into the Apple over a serial cable. After the initial bootstrap, he runs the code and you see (in full four-color splendour!) a low-res Windows XP appear on the IIc.

2440964467_decb0daf10_oWhat’s more incredible, but is unfortunately not demonstrated in the video, is that he appears to have not just mirrored the PC’s screen on the Apple, but has actually managed to get a one-frame-per-second bi-directional VNC working at 115,200 baud. In this snapshot from his flickr gallery, he appears to be playing Karateka on the IIc and watching it on his laptop.

If you’ve got a IIc kicking around, and you want to show it yet more new tricks, don’t neglect this browser written for the Apple IIc. Or if you’ve only got an Apple IIc+ and you’re totally ticked off that the beep is different from that of the IIc, you can always go on an epic reverse-engineering quest to “repair” it.

Continue reading “Streaming Video On An Apple IIc”

Physics You’ve Never Heard Of Provides Power From Waves

“In the future, we’ll be generating a significant fraction of our electricity from harnessing the waves!” People have been saying this for decades, and wave-generated electricity is not a significant fraction of an ant’s poop. It’d be fantastic if this could change.

If you believe the owners of Oscilla Power, the main failing of traditional wave-power generators is that they’ve got too many moving parts. Literally. Metal mechanical parts and their seals and so on are beaten down by sun and salt and surf over time, so it’s expensive to maintain most of the generator designs, and they’re just not worth it.

Oscilla’s generator, on the other hand, has basically no moving parts because it’s based on magnetostriction, or rather on inverse magnetostriction, the Villari effect. Which brings us to the physics.

Magnetostriction_by_ZureksMagnetostriction is the property that magnetic materials can shrink or expand just a little bit when put in a magnetic field. The Villari effect (which sounds much cooler than “inverse magnetostriction”) is the opposite: magnetic materials get more or less magnetic when they’re squeezed.

mpv-shot0001So to make a generator, you put two permanent magnets on either end, and wind coils around magnetostrictive metal bars that are inside the field of the permanent magnets. Squeeze and stretch the bars repeatedly and the net magnetic field inside the coils changes, and you’re generating electricity. Who knew?

Right now, according to The Economist Magazine’s writeup on Oscilla, the price per watt isn’t quite competitive with other renewable energy sources, but it’s looking close. With some more research, maybe we’ll be getting some of our renewable energy from squeezing ferrous bars.

And while we’re on the topic, check out this recent article on magnets, and how they work.

Metalab Bypasses IR Remote With Audio Circuit

Infra-red (IR) remotes are great, unless you’re in a hackerspace that’s full of crazy blinking lights and random IR emissions of all kinds. Then, they’re just unreliable. Some smart folks at Metalab in Vienna, Austria cut out the IR middle-man with a couple transistors and some audio software. They call the project HDMI Whisperer, and it’s a cute hack.

Metalab’s AV system has a web-frontend so that nobody ever has to stand up unless they want to. They bought an incredibly cheap 5-to-1 HDMI Switch to switch between displaying multiple video streams. But how to connect the switch to the Raspberry Pi server?

Fortunately, the particular switch has a remote-mounted IR receiver that connects to the main unit through a stereo audio jack. Plugging this sensor into a laptop and running Audacity while pressing the buttons on the remote got them audio files that play the remote’s codes. Simply playing these back out of the Raspberry Pi’s audio out and into the switch’s IR input through a tiny transistor circuit does the trick. Now they have a networked five-way HDMI switch for $10.

Given the low data rates of most IR remotes, we could imagine using the same trick for devices that have built-in IR receivers as well. Simply clip out the IR receiver and solder in a couple wires and then inject your “audio” signal directly.

But IR hacks are loads of fun. We’ve seen a bunch here, from the classic camera shutter-release hack to a more general tutorials on cloning IR signals with Arduinos.

Thanks [overflo] for the tip!

Absurd Clock Uses Twelve ESP8266 Modules

Quick quiz: How many ESP8266 modules do you need to make an LED clock? Hint: a clock displays 12 hours.

Nope! Twelve is not the answer. But that didn’t stop Hackaday.io user [tamberg] from building a 12-ESP clock during the Bilbao, Spain Maker Faire. The “advantage” of using so many ESP8266s is that each one can independently control one hour LED and its associated slice of five minute-marker LEDs. Each ESP fetches the time over the Internet, but only lights up when it’s time.

It’s like parallel processing or something. Or maybe it’s redundant and failsafe. Or maybe it’s just an attempt to put the maximum Internet into one Thing. Maybe they had a team of twelve people and wanted to split up the load evenly. (We couldn’t think of a real reason you’d want to do this.)

All snark aside, the project looks great as you can see in this Flickr gallery, and all of the design files are available if you’d like to re-use any parts of this project. We’re thinking that the clock face is pretty cool.

Continue reading “Absurd Clock Uses Twelve ESP8266 Modules”

Motorcycle Headlight Modulator Is A Bright Idea

Motorcyclists are paranoid about being hit by cars, and with reason. You’re a lot safer when you’re encased in a metal shell, with airbags and seatbelts. The mass difference between a car and a motorcycle doesn’t work out well for the biker, either. Unfortunately for bikers, motorcycles are also slimmer and generally less visible than cars.

A few decades ago, motorcycle manufacturers switched over to daytime running headlights to make bikes more visible. In the meantime, however, cars have done the same, leading many bikers to fear that their visibility advantage is losing it’s impact. The solution? Blink the headlights gently during the daytime, and run them normally at night.

[William Dudley] was unsatisfied with commercial versions, so he built a custom headlight modulator for his motorcycle.

head_mod_cds_7_schem And believe it or not, he did it with a 555 timer IC and a light-dependent resistor (plus some transistors and a whole slew of miscellaneous parts). But [William]’s design is a good one, and he walks you through all of the choices he made in building the light-sensing circuit that disables the 555.

Whether you need a motorcycle headlight modulator or are interested to learn how this problem would be solved in the pre-Arduino days, go check out [William]’s post. And while you’re on the nostalgic electronics trip, check out this nixie tube speedometer.