DingoQuadruped Is A Cheap Canine-Like Robot

Robot humanoids are cool, but also a bit hard to make work as they only have two legs to stand on. Four-legged robots can be a bit more approachable. The Dingo Quadruped aims to be just such an open-source platform for teaching and experimentation purposes.

The robot is based on the Stanford Pupper, a robot platform we’ve discussed previously. It bears a design not dissimilar from the popular Spot robot from Boston Dynamics. Where Spot costs tens of thousands of dollars, though, Dingo is far cheaper, intended for cheap production by students and researchers for less than $1,500.

The robot weighs around 3 kg, and is approximately the size of a shoebox. Control over the robot is via a wireless game controller. Each leg uses three high-torque servo motors, which are elegantly placed to reduce the inertia of the leg itself. A Raspberry Pi runs the show, with an Arduino Nano also onboard for interfacing analog sensors or additional hardware. The chassis itself has a highly modular design, with a focus on making it easy to add additional hardware.

If you want to get started experimenting with quadruped robots, the Dingo might just be the perfect platform for you. Video after the break.

Continue reading “DingoQuadruped Is A Cheap Canine-Like Robot”

New Wearable Detects Imminent Vocal Fatigue

“The show must go on,” so they say. These days, whether you’re an opera singer, a teacher, or just someone with a lot of video meetings, you rely on your voice to work. But what if your voice is under threat? Work it too hard, or for too long, and you might find that it suddenly lets you down.

Researchers from Northwestern University have developed a new technology to protect against this happenstance. It’s the first wearable device that monitors vocal usage and calls for time out before damage occurs. The research has been published in the Proceedings of the National Academy of Sciences.

Continue reading “New Wearable Detects Imminent Vocal Fatigue”

BIOS POST Card Built Using Raspberry Pi Pico

A computer’s BIOS includes basic diagnostic tools for troubleshooting issues. Often, we rely on the familiar beeps from the POST system for this reason. However, error codes are also available via hardware “POST Cards” that were particularly popular in the 1990s. [Mr. Green] has now built a POST card using readily-available modern hardware.

[Mr. Green] built the device to help troubleshoot an x86 based firewall appliance that was having trouble. Like many x86 systems, it featured a Low Pin Count (LPC) bus which can be used to capture POST troubleshooting codes. By hooking up a Raspberry Pi Pico to the LPC bus on the firewall’s motherboard, it was possible to get it to display the POST error codes on some LEDs. This is of great use in the absence of a conventional PC speaker to sound the error out with beeps.

The build can be used for POST-based troubleshooting on any x86 system with an LPC bus. Files are on Github for those eager to replicate the build. We’ve seen similar work before, too. Video after the break.

Continue reading “BIOS POST Card Built Using Raspberry Pi Pico”

Arduino-Powered Missile System Uses Ultrasound To Aim

In the real world, missile systems use advanced radars, infrared sensors, and other hardware to track and prosecute their targets. [Raspduino Uno] on YouTube has instead used ultrasound for targeting for an altogether simpler desktop fire control solution.

This fun build uses a common off-the-shelf USB “missile launcher” that fires foam darts. To supply targeting data for the launcher, an Arduino Uno uses an ultrasonic sensor pair mounted atop a servo. As the servo rotates, the returns from the ultrasonic sensor are plotted on a screen run by a Raspberry Pi. If an object is detected in the 180-degree field of view of the sweeping sensor, a missile is fired using the dart launcher.

It’s a relatively simple build, but nonetheless would serve as a useful classroom demonstration of radar-like targeting techniques to a young audience. Real military hardware remains altogether more sophisticated. Video after the break.

Continue reading “Arduino-Powered Missile System Uses Ultrasound To Aim”

A Super-Cheap Turntable Build For Photographic Purposes

When it comes to photographing products or small items, sometimes it’s useful to get vision from all angles. Shooting a video of an item on a turntable is an ideal way to do this. [ROBO HUB] built a super-cheap turntable for just this purpose.

The build relies upon a regular micro servo to handle rotating the turntable. However, it has been modified from stock to rotate 360 degrees instead of its usual 180 degree range of motion. This is a common hack that allows servos to be used for driving wheels or other rotating mechanisms. In this case, though, any positional feedback is ignored. Instead, the servo is just used as a conveniently-geared motor, with its speed controlled via a potentiometer. A CD covered in paper is used as a turntable, with the electronics and motor assembled in a cardboard base.

It’s a simple hack, and one you can probably put together with the contents of your junk drawer. Combined with a lightbox, it could up your photo and video game significantly. Those skills are super useful when it comes to documenting your projects, after all!

Cheap USB Sniffer Has Wireshark Interface

If you’ve done any development on USB hardware, you’ve probably wished you could peek at the bits and bytes as they pass through the data lines. Sometimes, it’s the only way to properly understand what’s going on. [ataradov]’s USB sniffer is built to do just that. 

To sniff high-speed USB communications, the device relies on a Lattice LCMXO2 FPGA and a Cypress CY7C68013A microcontroller, paired with a Microchip USB3343 USB PHY. This setup is capable of operating at data rates of up to 40-50 MB/s, more than enough to debug the vast majority of USB peripherals on the market.

The device is built specifically for use with Wireshark. Most commonly used for network packet sniffing, Wireshark can also be used with a wide variety of other capture hardware for other debugging tasks, as seen here. In addition to live sniffing, it also allows captured data to be saved for later analysis.

If you need this tool, spinning up your own is straightforward. Gerber files are available and the required components can be bought off the shelf. Once assembled, you can program the chips via USB, with no external hardware programmer required.

We’ve seen some other similar hardware before. Meanwhile, if you’re whipping up your own useful debug tools, don’t hesitate to drop us a line!

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

Microsculptures 3D Printed With Advanced Macromolecular “Inks”

When we think about 3D printing, our mind often jumps to hot nozzles squirting out molten plastic. Other popular techniques include flashing bright light into resin, or using lasers to fuse together metal powders. All these techniques are great at producing parts with complicated geometries at desktop scales.

However, it’s also possible to 3D print at altogether microscopic scales. Researchers in Germany have now developed advanced macromolecular “inks” that can be used to create microscopic 3D sculptures with finer control than ever before.

Continue reading “Microsculptures 3D Printed With Advanced Macromolecular “Inks””