Falling Sand Game On An FPGA

This falling sand game runs on a field-programmable gate array. The Altera Cyclone II resides at the heart of that development board, running the game which was written in Verilog. [Skyler Schneider] modeled his project after a Java version of the game called Pyro Sand Game. He treats each pixel of the 640×480 VGA screen as its own cell, following a set of rules to change the cells around it. This is very similar to Conway’s Game of Life, except that there are different categories of cells that behave uniquely (oil, water, plant, fire, etc.) and gravity is a key factor. Of particular interest to us were the rules for each cell, and the method [Skyler] used to feed and sync the VGA output. After the break you can see his demonstration videos, which walk through all of the features including the Troll button.

Continue reading “Falling Sand Game On An FPGA”

Developing A Sega Game Gear Flash Cartridge

[Gerry O’Brien] tackled his most recent project, designing a flash ROM cartridge for the Sega Game Gear, with great success. Above you can see the test rig he used to reverse engineer the communications between an original ROM chip and the circuit board that it came on. He removed the chip, soldered a ZIF socket to the pads, then used a DIP socket as an adapter for that chip. Connected to each pin is a test lead for a logic analyzer. That’s a heck of a lot of channels to decipher!

It turns out that the cartridges use Integrated Mapping (does anyone have a link explaining this?) so dropping in a flash memory chip is not an option; you need a memory bank controller. [Gerry’s] solution to this issue is twofold: you can etch your own board with a controller chip and ZIF socket for the flash chip, or you can modify a Sega Master System cartridge to use as an adapter board. We’ve got pictures of both methods after the break, as well as his five instructional videos walking us through the fabrication process.

This isn’t [Gerry’s] first time working with flash cartridges. We looked at his work with Game Boy ROMS earlier in the year.

Continue reading “Developing A Sega Game Gear Flash Cartridge”

Inventing Robot Athletes

The human body is an amazing instrument from an engineering standpoint. Replicating just one part of it proves extremely difficult but these athletic legs show a lot of promise. This is the work of a Japanese researcher named [Ryuma Niiyama]. He’s been working on the design for years, and is now using pneumatic actuators to mimic the muscles in a human leg. The lower portion of the leg uses a spring mechanism that resembles some running prosthetics currently in use. These serve as a spring to store energy and reuse it by bouncing against the ground. He’s trying to teach his robot to use these legs; taking it through a learning process necessary to use the thigh actuators for locomotion and balance. We were surprised at how life-like the motion in the video after the break is. Even when falling down the movements are very life-like.  We thought the movements of Little Dog were real enough to be creepy, and this robot may be close enough to our own mannerisms to fall into the uncanny valley.

Continue reading “Inventing Robot Athletes”

My RepRap Is Bigger Than Yours

This 3D printer build is a thing of beauty. It prints in ABS plastic on quite a large base. The platform provides all of the X and Y movement, making the gantry stationary except for the Z axis. it is possible to print parts up to about 15″x15″ by 13″ high. The gray hose snaking down around the right side of the print head is a fume extractor, keeping the air clear around the PID controlled head, and heated base. Judging from the example items this prints with fantastic accuracy.

[via Make]

AVR HV Rescue Shield 2

[Jeff Keyzer] has a new version of the HV Rescue Shield available. This tool allows you to use an Arduino to reset the fuse bits on AVR microcontrollers. This is necessary if you make a mistake and disable the reset pin, or choose the incorrect clock settings (this will probably happen to you at some point). In order to bring the chip back to life you’ll need to use High Voltage Programming. The last version of the shield only worked with High Voltage Parallel Programming (HVPP) but this rendition can also use High Voltage Serial Programming (HVSP) for 8-pin chips that don’t have enough inputs for parallel communications.

As we talked about in our AVR Programming Tutorials this is no replacement for a high-end programmer like the STK500 or an AVR Dragon, but if you already have an Arduino a kit will only cost you $20 (or you can etch and build it yourself). We would have liked to see a breakout header for the HVP signals for off-board use. The absence of a breakout header doesn’t preclude this, but since you need the on board boost converter for the 12V signals, and because this shield can’t be used with a breadboard due to pin spacing, it’s hard to patch into signals for non-DIP use. We also think some clever firmware hacking and this could be used for HV programming, like we needed for that LED light bulb.

MP3 Player Barely Larger Than An SD Card

If your board fabrication and soldering skills are up to it, you can make your own tiny MP3 player. This rendition is just about half again as large as a standard SD card, whose slot is on the bottom of the board seen above. The heavy lifting is taken care of by a VS1011 MP3 decoder which also has its own stereo headphone driver on-chip. There’s no display and it seems that most of the 4k of program memory on the PIC 18LF88 is being used. Too bad, we’d love to take this to the next level, attaching it to the head unit in a car and spoofing the communications as if this were a CD changer.

[via Hacked Gadgets]

Shooting Fireballs From Your Wrists – Hadouken!

[Glass Giant’s] wrist-mounted fireball launcher adds a little stage magic to his life. This method of fire production is several orders of magnitude less dangerous than other arm-attached flamethrowers or instrument-mounted torches. The module, which is strapped to the underside of his wrist, stores and lights a combination of flash cotton and flash paper. The two flammables are housed in a small aluminum tube touching a glow plug. A slider switch acts as a safety, completing the circuit from the battery, to the glow plug, terminating in a mercury switch which heats things up when held at the proper level. He’s still working out the best way to load the flash materials but as you can see in the video after the break, this is definitely worthy of the Street Fighter reference.

Continue reading “Shooting Fireballs From Your Wrists – Hadouken!”