ATtiny Hacks: Simple USB Temperature Probe

ATtiny Hacks Theme Banner
simple_attiny_usb_temperature_probe

[Dan’s] office is awfully hot, but he needed some real temperature numbers that he could show the building management office to justify opening a maintenance ticket. He had seen some simple temperature probe examples online, and decided to build his own using a small AVR chip.

Based off a similar temperature monitoring example called EasyLogger, his temperature probe uses an LM34 temperature sensor, which is wired to an ATtiny45. The ATtiny communicates with his computer using the Ruby-USB library in conjunction with a bit of Ruby code he put together. Once the data is obtained, all of the temperature measurements are logged and graphed using RubyRRDTool.

As you can see by in the image above, his office is far hotter than it should be, so we’re pretty sure he’s happy to have actual measurements to back up his claims.

If you are looking to make a small temperature probe of your own, his code, schematics, and links to all of the tools he used in the project are available on his site.

Recreating The Mac Plus With An FPGA

sad_mac_fpga_mac_clone_plustoo

[Steve] over at Big Mess O’ Wires has never been so happy to see the “Sad Mac” icon.

A little over a month ago, he decided to take on the task of building his own Mac clone using modern technology. Not to be confused with Mac emulation on modern hardware, he is attempting to build a true Mac clone using an FPGA that is functionally identical to the original.

He is calling his creation the “PlusToo”, with the goal of producing a modern version of the Macintosh Plus. The Plus shares a good amount of hardware with its other original Mac brethren, allowing him to replicate any of the other machines such as the Mac 128K, with a few simple configuration changes.

Building this clone is an incredible undertaking, and it’s a lot of fun to watch the construction progress bit by bit. [Steve] has been diligently working for a little over a month now, recently getting the clone to run 68000 code from the Mac ROM, resulting in the Sad Mac image you see above. While the logo has been dreaded among Mac users for years, it signals to [Steve] that things are coming along nicely.

JGPX Keeps The Bachelor Party Moving In The Right Direction, Regardless Of BAC

jGPX_bachelor_party_navigator

[Davy] and his friend [Chris] were tasked with putting together a bachelor party for their friend [J], and had a little more in mind than the standard drunken revelry. To earn the privilege of partying his brains out, they decided that [J] would have to fulfill a series of tasks and challenges before joining up with the rest of his friends for the evening’s events. [Davy] didn’t specify what these tasks were, lest he spoil the surprise, but he did let us in on a little device that he and [Chris] built to help guide the bachelor through his day.

They were a bit worried that the bachelor would get sidetracked during his journey if he happened to imbibe along the way, so they built a device called jGPX that would ensure [J] stayed on track and on time. jGPX is a custom GPS navigator consisting of an Arduino, a GPS module with built-in antenna, and a compass.  The pair created a set of routes in Google Earth, exporting the data to KML for interpretation by their device. The jGPX is meant to guide [J] along via a small LCD screen that shows him the distance to his target as well as the proper direction of travel to get there.

It looks like [J’s] friends put a lot of effort into his party, and although there are no details as to how things went, we’re sure it was a blast!

Solar-powered RepRap Prints Even When The Power Is Out

solar_powered_3d_printer_reprap

[Mark] wrote in to share a little creation that he is calling the first solar-powered 3D printer in existence. While we can’t say that we totally agree with him on that title, we will give him the benefit of the doubt that this is the first solar-powered RepRap we have seen thus far.

You might remember [Mark] from his previous exploits, but rest assured that there’s little possibility of anyone losing an eye with this one. He has taken his RepRap outdoors, and with the help of a solar panel plus a few batteries from Harbor Freight, he has the world’s first solar-powered RepRap*.

The trick behind keeping the RepRap running for such a long time with the sun as its only power source lies in the RAMPS board [Mark] uses. He has the 1.3 revision of the shield, which enables him to print objects loaded from an SD card rather than requiring a computer to be connected at all times.

So, if you happen to need the ability to print 3D objects where an extension cord cannot possibly reach, check out [Mark’s] setup and get to building!

* Maybe. Perhaps.

Continue reading “Solar-powered RepRap Prints Even When The Power Is Out”

ATtiny Hacks: An Audio Alert For Cell Phones Accidentally Left On Vibrate

ATtiny Hacks Theme Banner
vibe2tone_cell_phone_vibration_alert

[John Thomson] usually keeps his phone on vibrate when it’s in his pocket, and he often forgets to turn the ringer back on when setting it down to charge. This typically results in a bunch of missed calls in the meantime, so he had to devise a way to counteract his forgetfulness.

You might remember [John] from the Santa-pede contest we held last December. He wanted to try his hand at yet another competition, the Avnet Dog Days of Summer contest, so he scrambled to come up with a quick fix for his situation. He concocted a simple circuit based on [ChaN’s] design for a “Simple SD Audio Player with an 8-pin IC” that would alert him to incoming calls, even when his phone was on vibrate.

[John] used an ATtiny85, just as [ChaN] did, adding a speaker for sound output and a piezo sensor to detect his phone’s vibrations. When the piezo senses a bit of motion, the audio player kicks in, blaring a series of sounds that are sure to get [John’s] attention.

Keeping Simple Children’s Toys Interesting With Small Modifications

souping_up_slot_cars

[Jaroslav] was racing slot cars with his son not too long ago, but like many of us discovered in our youth, driving cars around a small oval track can get dull after awhile. Rather than buy more track sections, he decided to fiddle with their cars a bit to make racing them a little more exciting.

After removing the top of his slot car, [Jaroslav] found that it cruised around corners with ease, giving him a distinct advantage over his son. He did the same with his son’s car to level the playing field, then he decided to add a few extra LEDs to make driving around the small track more lively.

Now, this obviously isn’t the most advanced of modifications, but it is a great example of extending the useful life of a toy by using cheap, easy to access components. We think that it would be reasonable to add even more features to the cars/track such as speed-dependent lighting or lap counters without changing the car dynamics all that much.

Any thoughts or suggestions to help [Jaroslav] soup up his kid’s race track even more? Share them with us in the comments.

Motion Detecting Window Closers Keep Train Noise At Bay

motion_detecting_window_closers

[Ed Rogers] has the unfortunate privilege of living right next to a set of train tracks, and as a man who holds his sleep in high regard, he needed to find a way to keep the noise in his bedroom to a minimum. To combat the sound of passing trains, he built himself a system that automatically closes his windows when a train passes by his apartment.

The setup relies on a web cam, which uses motion-sensing software to detect a passing train. The video is analyzed by a computer in his room which passes a message to an Arduino when a train is near. The Arduino then sends a pair of window mounted linear actuators into action, slowly (and quietly) shutting his windows.

The linear actuators move pretty slowly as you can see in the video below, but we doubt that matters. Since it looks like [Ed] lives in a slow zone, it likely takes quite a bit of time for a freight train to pass, making the 40-second closing period more than reasonable.

Continue reading “Motion Detecting Window Closers Keep Train Noise At Bay”