A Hot Printer For Cool Selfies

Randomly buying some hackable gadgets just because they are cheap and seem potentially interesting for future projects is something that most of us can relate to. It also happened to [fruchti] when he bought five thermal printer modules without any specific purpose for them in mind. It was not until several years later that he put them to good use for his inverse thermal camera project.

The name perfectly summarizes the device’s function which is to convert images to heat instead of the other way around. To put it in a less cryptic manner, [fruchti] built a selfie camera that instantly prints out pictures on thermochromic paper. The project would have been easy to implement on a Raspberry Pi but instead, he chose a more minimalist approach by using an STM32 microcontroller. This involved some challenges because the MCU didn’t have enough RAM to store an entire frame and the camera module came without a FIFO buffer. To capture and store the image data [fruchti] applied a line-by-line dithering algorithm which is described in detail in his accompanying blog post while the corresponding code is available on GitHub. Even though the case was improvised from scrap PCB materials the finished device still looks great. In particular, the fuse holders that are being used to hold the paper roll make it almost steampunk.

Naturally, this is not the first time we have seen thermal printers being used for instant picture taking and it probably won’t be the last.

Drumming A Beat On A Hundred-Year-Old Typewriter

We have seen a fair share of unusual items being turned into musical instruments. Luckily, with a little bit of hacking it is possible to turn almost anything into a MIDI controller. [William Sun Petrus] just converted a 1920s typewriter into a drum machine and delivers a hell of a live performance on it.

The build is rather simple, all [William Sun Petrus] needed was an Arduino Mega and lots of wires to convert a hundred-year-old Remington typewriter into a MIDI controller. Whenever a key is pressed the hammer hits a metal plate at the center of the typewriter and closes the contact between one of the Arduino’s IO pins and the 5 V rail like a regular push button. The Arduino code is based on the MIDI library sending commands to a PC which is running Hairless MIDI and Ableton. As sort of a gimmick, [William Sun Petrus] included an LCD screen which shows a line from Green Eggs and Ham by Dr. Seuss every time a key is pressed.

Interestingly, the latency due to the hammer’s travel time does not disturb [William Sun Petrus’] live play. To calm the skeptics in the comments he also released an unedited version of the video to prove that the performance is real and an instructional video on how to play his beat note by note.

Other unusual MIDI controllers include a bandoneon accordion or this English concertina.

Video after the break.

Continue reading “Drumming A Beat On A Hundred-Year-Old Typewriter”

A Smart DIY Metal Detector

If you ever thought about becoming a treasure hunter this simple DIY metal detector by [mircemk] may be a nice project to start with.

The design is based on an opensource metal detector called Smart Hunter. This Very Low Frequency (VLF) metal detector uses transmitter and receiver coils in so-called Double-D geometry. The transmitter coil is driven by a signal generator module that operates at its resonant frequency of 4.74 kHz.

The resulting oscillating magnetic field will induce eddy currents in a nearby metal object that in turn induce a signal in the receiver coil. This signal is then fed into the microphone port of a smartphone and analyzed by a custom metal detector app. [mircemk] also included an audio amplifier and small speaker into the device.

The detector turned out to be quite sensitive and can detect a coin at up to 25 cm distance and larger metal objects even up to 1 m. Modern metal detectors can also distinguish between different types of metal by analyzing the phase shift of the detected signal which might be some way to improve the design.

Video after the break.

Continue reading “A Smart DIY Metal Detector”

Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement?

Stephen Wolfram, inventor of the Wolfram computational language and the Mathematica software, announced that he may have found a path to the holy grail of physics: A fundamental theory of everything. Even with the subjunctive, this is certainly a powerful statement that should be met with some skepticism.

What is considered a fundamental theory of physics? In our current understanding, there are four fundamental forces in nature: the electromagnetic force, the weak force, the strong force, and gravity. Currently, the description of these forces is divided into two parts: General Relativity (GR), describing the nature of gravity that dominates physics on astronomical scales. Quantum Field Theory (QFT) describes the other three forces and explains all of particle physics. Continue reading “Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement?”

Ultrasonic Sound Gun Precisely Aims Your Music

When listening to music you sometimes cannot avoid the situation where other people get annoyed because they feel it disrupts their important doings or they do not share your taste in avant-garde doom metal. Of course one could just use headphones. But a hackier way would be to build a parametric speaker that focuses soundwaves into a narrow beam like [Shane] did with this ultrasonic sound gun.

As the directivity of a soundwave depends on the size of the source and its frequency, a directed beam can practically only be achieved with ultrasound. Even though we are not able to perceive frequencies above ~20 kHz, the nonlinear properties of air make it possible to hear the audio modulated onto an ultrasonic carrier signal. For his sound gun [Shane] was inspired by another parametric speaker project. It took him some time to get the 555 timer circuit oscillating at the right frequency and he fried a cheap Bluetooth audio module while trying to increase the output volume but in the end, he managed to get everything working. As the project name suggests, he also 3D printed a gun-shaped enclosure. The video below shows that the sound from the gun behaves really similar to a beam of light and can, for example, be bounced off other objects.

If you are looking for other inspiration there is a whole list of cool ultrasonic projects from distance sensors to acoustic levitation.

Continue reading “Ultrasonic Sound Gun Precisely Aims Your Music”

A Lego Tensegrity Structure

Tensegrity structures are an impressive demonstration of how to achieve mechanical stability through tensile forces. Since the topic is currently trending it was probably only a matter of time before somebody like [Alexandre Thiery] came with the idea to build a tensegrity model from Lego.

In the GIF below that [Alexandre Thiery] shared on his Twitter account you can see his kids admiring the model. Tensegrity structures consist of elements under constant tension – in most cases strings – and components under compression, in this case beams of Lego. By combining these elements, one can build stable structures that seem to float in midair. A simple daily-life example for tensegrity is a balloon where the skin is the tensional element while the air inside is the component under compression.

[Alexandre Thiery] has come up with the clever idea to simply clamp the strings between two Lego blocks. This certainly paves the way for other more complicated Lego-based tensegrity structures that we will likely see in the future. [Alexandre Thiery] also recently extended his model by stacking an identical structure on top of it.

If you do not have any Lego at hand just fire up your 3D printer to make a tensegrity physics toy or a floating table.

Continue reading “A Lego Tensegrity Structure”

Underwater Crawling Soft Robot Stays In Shape

When you think of robots that were modeled after animals, a brittle star is probably not the first species that comes to mind. Still, this is the animal that inspired [Zach J. Patterson] and his research colleagues from Carnegie Mellon University for their underwater crawling robot PATRICK.

PATRICK is a soft robot made from molded silicone. Each of his five limbs contains several shape memory alloy (SMA) springs which can be contracted through Joule heating thereby causing the limbs to bend. The robot’s control board is sending and receiving commands via Bluetooth Low Energy from a nearby computer. To control PATRICK’s motion the researchers constructed a closed-loop system where an offboard OpenCV based camera system is constantly tracking the robot. As shown in the video below with an average velocity of 1 cm/s, PATRICK’s movement is a bit sluggish but the system is supposedly very robust against uncertainties in the environment.

In the future [Zach J. Patterson et al.] would like to improve their design by giving the robot the ability to grasp objects. Ultimately, also the offboard camera should be replaced with onboard sensors so that PATRICK can navigate autonomously.

Soft robots like artificial jellyfish are especially useful underwater and sometimes almost cross the boundary to organic life.

Continue reading “Underwater Crawling Soft Robot Stays In Shape”