Solar Power Your Pi

Running a Raspberry Pi with solar power sounds easy. Of course, like most things, the details are what get you. About a year ago, [Bystroushaa] tried it without success. But the second time turned out to be the charm.

Of course, success is a relative term. It does work, but there is concern that it won’t be sufficient in the winter. In addition, if the battery dies, everything doesn’t restart automatically. Still, it is usable, and there should be ways to solve those problems.

The original attempt used a PiJuice hat and solar panel. This time, the design didn’t use these, opting instead for a LiFePO4 battery, a solar regulator, and a solar panel. The rest of it comes down to mechanical and physical mounting. The cheap regulator has some drawbacks. For example, it doesn’t allow for monitoring like more expensive units. It also cannot balance the cells periodically, although that could be done with an external controller.

We’ve seen solar-powered Pi boards before. Or, try a Game Boy.

All American Five Lives Again

If you haven’t heard of an “all-American five,” then you probably don’t dig through bins for old radios. The AA5 is a common design for old AM radios that use five tubes: a rectifier, an oscillator/mixer, an IF amplifier, a detector, and a single tube for driving the speaker. [Mikrowave1] took an old specimen of such a radio from the mid-1950s and wanted to restore it. You can see how it went in the video below.

One feature of the design is that the set had a “hot chassis,” which means you really want to use an isolation transformer before you work on it. We were taught to touch a chassis with the back of our hand first because of radios like this. If it is “hot,” the muscle contraction would throw your arm away from the radio instead of forcing you to grip it uncontrollably.

The GE radio had many quality design touches you don’t always see in a radio like this. The mix of brands indicates that the radio has had tubes replaced in the past. It also had a clearly replaced electrolytic capacitor. Surprisingly, all the tubes were good, although the power output tube was marginal. However, a light bulb was bad and required a little surgery to allow for a slightly different replacement.

Some capacitors were neatly replaced, also. A lot of cleaning and testing later — along with a dropped tool — the radio was ready to play again. Fixing radios from this era is a great hobby. You can get to everything and you don’t really need anything fancy, although a tube tester is helpful. The classic method of troubleshooting is to either find audio on the volume control or not and then work your way backward or forward using a signal tracer or — since they are so readily available now — a scope. Alternatively, you could inject a signal at the volume control and work your way through the circuit until you can or can’t hear the injected signal.

Not the first tube radio we’ve watched being restored, of course. Need a tube tester?

Continue reading “All American Five Lives Again”

Examining Test Gear From Behind The Iron Curtain

Back in 1978, an oscilloscope was an exotic piece of gear for most homebrewers. We expect they were even more rare in private hands behind the iron curtain, and [Thomas Scherrer] shows us a Soviet X1-7B combination oscilloscope and spectrum analyzer (he thinks, at least, it is a spectrum analyzer) that he got working.

The Soviet scope is clearly different with its Cyrillic front panel. Luckily, Google Translate was up to the task of decoding a picture of the device. However, the differences aren’t just cosmetic. The scope also has a very interesting rotating bezel around the round CRT. You can see a video of the 8.2 kg scope below.

A quick look inside looks pretty conventional for a scope of that era that used all transistors in the circuitry. The rotating bezel, though, also controls something that looks like a big mechanical switch and cavity or, perhaps, a big mechanical variable component of some kind.

Satisfied that the insides were in reasonable shape, [Thomas] was ready to try turning it on. We want to say it went well, but… there was censored audio, along with a loud noise, right after it was plugged in. Troubleshooting centered on what was producing a burned smell, but a quick examination didn’t turn up anything obvious, despite being localized to the power circuitry. The fuse didn’t blow, oddly, and — even more puzzling — the unit was off when plugged in!

It turns out the input power filter leaked to the chassis. Since he had a ground on the chassis, that explained the failure, and while it was annoying, it was better than getting a shock with a hot chassis. The second plug in went better.

It finally did work, at least somewhat, although he never explored some of the odd features the scope appears to have. We love the old boat anchor scopes but don’t see many Soviet instruments, at least not those of us on this side of the Atlantic.

We do see a few Soviet-era computers now and again. As for the fuse not blowing, it was shorted before the fuse, but apparently, fuses don’t always blow when you expect them to, anyway.

Continue reading “Examining Test Gear From Behind The Iron Curtain”

Retrotechtacular: The Computer Center Of 1973

You might expect Bell Labs would have state-of-the-art computers, and they did. But it is jarring to realize just how little that was in 1973, fifty years ago. If you started work at Bell’s Holmdel Computing Center back then, you might have watched one of the orientation videos below. Your first clue about how far things have come might be the reference to the IBM 370/165, which had “3 million bytes of core, 2 million of which are available for programmer use.” Even our laptops today have at least 8 gigabytes of RAM. There were at least two other smaller IBM 370s, too. Plenty of 029 card punches are visible.

If you were trying to run something between 8:00 AM and 5:30 PM, you had to limit your job run time to three minutes, 4,000 lines of output, and no more than 1,000 cards in and 5,000 cards out. Oh, and don’t use more than 384 kB of that core memory, either. If you fell within those limits, you could hand your card deck over at the express counter and get your results in only five or ten minutes. If you were not in the express line but still rated “premium” service, you could expect to wait a half hour.

Continue reading “Retrotechtacular: The Computer Center Of 1973”

Retro Gadgets: The Real Desktop Computer

People argue about the first use of the computer desktop metaphor. Apple claims it. Xerox probably started it. Yet, when I think of computer desktops, I think of the NOVAL 760. Not a household name, to be sure, but a big ad spread in a June 1977 Byte magazine was proud to introduce it. At $2995, we doubt many were sold, but the selling point was… well… it was built into a “handsome wood desk, designed to compliment any decor.” The desk folded down when you were not using the computer, and the keyboard recessed into a drawer.

The computer itself was no slouch for 1977, but nothing you couldn’t find elsewhere. An 8080, speed unspecified, had 16 kB of RAM and 3 kB of PROM. There was also a display with a few kB of memory hanging around, too. And just in case you were worried, the bottom of the page entitled “The Ultimate in Home Computers” reads, “The NOVAL 760 COMPUTER. A fully-assembled, fully-tested personal computer … not a kit!” Of course, for us, that’s not really a selling point. If you wonder why the computer was memory limited, this is the time that Extensys bragged in an ad: 64 kB for $1495! If you ordered one, you could have it in 15 to 30 days, too!

There were options for more memory, and it wasn’t clear how many of the I/O devices in the ad were actually included in the advertised price. Some of the devices seemed very specialized, so we are guessing the basic system didn’t include some of them.

Continue reading “Retro Gadgets: The Real Desktop Computer”

Ask Hackaday: What’s Linux Anyway?

Any time we mention Linux, it is a fair bet we will get a few comments from people unhappy that we didn’t refer to it as GNU/Linux or with some other appellation. To be fair, they aren’t wrong. Linux is a kernel. Much of what we think of as a Linux desktop OS is really from other sources, including, but not limited to, GNU. We thought about this after reading a report from [The Register] that Linux has nearly half of the desktop OS Linux market. Wait, what?

If you are like us, you probably think that’s a typo. It isn’t. But the more you think about it, the less sense it makes. You know that half of the world’s desktops don’t run Linux. But maybe they mean Unix? Nope. So how can Linux have almost half of the Linux market? That’s like saying nearly half of Hackaday readers read Hackaday, right?

Continue reading “Ask Hackaday: What’s Linux Anyway?”

Old Style 1802 Computer Has MMU

When you think of an MMU — a memory management unit — you probably think of a modern 32-bit computer. But [Jeff Truck] has a surprise. His new RCA 1802 computer has bank switching, allowing the plucky little processor to address 256K of RAM. This isn’t just the usual bank-switching design, either.

The machine has several unique features. For example, an Arduino onboard can control the CPU so that you can remotely control the bus. It does not, apparently, stand in for any of the microprocessor support chips. It also doesn’t add additional memory or control its access.

The 256K of memory is under the control of the MMU board. This board generates two extra address bits by snooping the executing instruction and figures out what register is involved in any memory access. Memory in the MMU stores a table that lets you set different memory pages for each register. This works even if the register is not explicit and also for the machine’s DMA and instruction fetch cycles. If you know about the RCA “standard call and return technique,” which also needed a little patching for the MMU. [Jeff] covers that at the end of the video below.

This is a very simple version of a modern MMU and is an impressive trick for a 50-something-year-old CPU. We were surprised to hear — no offense to [Jeff] — that the design worked the first time. Impressive! There’s also some 3D printing and other tips to pick up along the way. But we were super impressed with the MMU. You might never have to do this yourself (although you could), but you can still marvel that it can be done at all.

We have a soft spot for the 1802s, real or emulated. The original ELF was great, but 256K is a lot better than the original 256 bytes!

Continue reading “Old Style 1802 Computer Has MMU”