Tiny Arduino Drone Even Has An FPV Camera

In the turmoil of today’s world, drones are getting bigger, badder, and angrier. [Max Imagination] has gone the other way with his work, though, building a teeny Arduino drone that can fit in the palm of your hand. Even if you have a small hand!

The drone is based around an Arduino Pro Mini, and uses an MPU6050 IMU for motion sensing and flight control. Communication with the drone is via an NRF24L01. Four small coreless motors are used for propulsion, driven by tiny MOSFETs, and the whole assembly is run via a teeny 220 mAh lithium-polymer battery. Oh, and there’s an FPV camera so you can put on some goggles and see where it’s going!

Control is via MultiWii software, written specifically for building multirotor craft. [Max] flies the craft using a controller of his own creation, again using an NRF24L01 for communication.

It’s a neat build, and a titchy one too! Tiny drones have a character all their own, even if they can’t really stand up to windier outdoor environments. Video after the break.

Continue reading “Tiny Arduino Drone Even Has An FPV Camera”

Fastest FPV drone, pending official confirmation. (Credit: Luke Maximo Bell)

Got To Go Fast: The Rise Of Super-Fast FPV Drones

Generally when one considers quadcopter drones, the term ‘fast’ doesn’t come to mind, but with the rise of FPV  (First Person View) drones, they have increasingly been designed to go as fast as possible. This can be for competitive reasons, to dodge enemy fire on a battlefield, or in the case of [Luke Maximo Bell] to break the world speed record. Over the course of months he set out to design the fastest FPV drone, involving multiple prototypes, many test runs and one failed official speed run.

The components of the third FPV drone attempt, as used with the world record attempt. (Credit: Luke Maximo Bell)
The components of the third FPV drone attempt, as used with the world record attempt. (Credit: Luke Maximo Bell)

The basic design of these designed-for-speed FPV drones is more reminiscent of a rocket than a quadcopter, with the upside-down propellers  requiring the operator first lifting the drone into the air from an elevated position. After this the drone transitions into a level flight profile by rotating with the propellers pointing to the back. This gives the maximum thrust, while the body provides lift.

Although this seems simple, flying this type of drone is very hard, as it’s hard to tell what is happening, even when landing. [Luke] ended up installing a camera in the nose which can rotate to provide him with different angles. Tweaking the flight computer to deal with the control issues that occur at speeds above 300 km/h.

Continue reading “Got To Go Fast: The Rise Of Super-Fast FPV Drones”

Pi Zero FPV Robot Uses Tiny Motor & Gears

We’ve seen plenty of first-person view (FPV) robots built using the Raspberry Pi Zero, but this one from [Shane] has an interesting twist: rather than directly driving the wheels from big motors, it uses small motors and gearboxes to drive the wheels, with some of the gears being 3D printed.

[Shane] has posted the full details of this cute little robot, complete with 3D models, code, and plans for the PCB that connects the Zero to the motors. These motors are N20 ones, which are much smaller and cheaper than what we usually see used in these projects, and run faster. They also often come with a gearbox that reduces the speed to something a bit more useful. Each motor drives the two wheels on one side through a 3D printed gear for tank-style steering.

To run the whole thing off a single LiPo battery, [Shane] also designed his own Pi Hat that converted the voltage to 5 V and added a couple of H bridge chips for the motors. It is a cute little build, but the requirement for a custom Pi hat perhaps puts it beyond most beginners, who might be interested in a cheap, straightforward build like this. Does anybody have any alternatives?

Continue reading “Pi Zero FPV Robot Uses Tiny Motor & Gears”

Send This FPV Bot Into The Crawlspace To Do Your Dirty Work

The least pleasant space in most houses is likely to be the space below it. Basements tend to be dank, dusty, and full of too many things that have too many legs. And even worse than the full basement is the dreaded crawlspace, which adds claustrophobia to the long list of unpleasantries that lie below. Sadly, though, a crawlspace might be a handy place to run wires, and if you’re hesitant to delve too deeply, this FPV cable-laying rig might be something to keep in mind.

This one comes to us from [Old Alaska] with very little detail other than what’s in the brief video below. The setup is clear enough — a need to run an Ethernet cable from one side of the house to the other, and a crawlspace to do it in. Also in the toolkit was an RC rock crawler with a field-expedient FPV camera. With Breaking Bad-style access to the crawlspace through a few floorboards, [Old Alaska] was able to deploy the crawler dragging a Cat 5 cable behind it. The terrain under the house made the rock crawler a good choice, with four-wheel-drive, locking differentials, and an articulating frame. The bot’s-eye view also makes it clear that actually crawling in this rubble-strewn crawlspace would be a painful affair.

With very little drama, [Old Alaska] was able to navigate the crawler across the crawlspace to the outer wall of the house, where he could fish the wire out and complete the connection — no fuss, no muss, no bloody knees. The only quibble we’d have is not running an extra length of pull rope with the wire. You never know when it’ll come in handy.

The whole thing reminds us of a more tactical version of [Cliff Stoll]’s subterranean inventory management bot.

Continue reading “Send This FPV Bot Into The Crawlspace To Do Your Dirty Work”

2022 FPV Contest: Congratulations To The Winners!

We wanted to see what the Hackaday crowd was up to in first-person view tech, and you didn’t disappoint! Commercial FPV quads have become cheap enough these days that everyone and their mom got one for Christmas, so it was fantastic to see the DIY spirit in these projects. Thanks to everyone who entered.

The Winners

None of the entries do the DIY quite as thoroughly as [JP Gleyzes]’s “poor man’s FPV journey”. This is actually three hacks in one, with DIY FPV goggles made from cheap optics and 3D printed additions, a USB joystick to PPM adapter to use arbitrary controllers with an RC transmitter, and even a fully DIY Bluetooth-based controller for a popular flight simulator. [JP] has done everything but build his own drone, and all the files are there for you to use, whether you’re goal is to do it on the cheap, or to do something new.

If you want to build your own drone from scratch, though, ESP32 Drone project has you covered. At least, mostly. This build isn’t entirely finished yet, and it’s definitely got some crash-testing still in its future, but the scope and accessibility of the project is what caught our eyes. The goal is to make a lightweight indoor quad around parts we can all get easily and cheaply, completely scratch-built. This drone is meant to be controlled by a smartphone, and the coolest parts for us are the ESP_Drone and ESPStream software that run on the drone and your phone respectively. Congrats to [Jon VB]! Now get that thing in the air.

And if you’re looking for a tidy little build, [Tobias]’s Mini FPV Speed Tank doesn’t disappoint. It’s a palm-sized mini tank, but this thing hauls, and looks like a ton of fun to drive around. It uses an absolutely tiny RP2040 module, an equally tiny receiver, and a nano FPV camera and transmitter to keep it compact. The 3D-printed frame and tracks are so nice that we’re not even complaining that the FPV rig is simply rubber-banded on top of the battery. This looks like a super fun build.

Each of these three projects have won a $150 Digi-Key shopping spree to help out with parts in this, or your next project. Thanks again to Digi-Key for sponsoring!

Continue reading “2022 FPV Contest: Congratulations To The Winners!”

Showing the end result car, with mechanum wheels and a green chassis with what seems to be a camera window on top

2022 FPV Contest: ESP32-Powered FPV Car Uses Javascript For VR Magic

You don’t always need much to build an FPV rig – especially if you’re willing to take advantage of the power of modern smartphones. [joe57005] is showing off his VR FPV build – a fully-printable small Mechanum wheels car chassis, equipped with an ESP32-CAM board serving a 720×720 stream through WiFi. The car uses regular 9g servos to drive each wheel, giving you omnidirectional movement wherever you want to go. An ESP32 CPU and a single low-res camera might not sound like much if you’re aiming for a VR view, and all the ESP32 does is stream the video feed over WebSockets – however, the simplicity is well-compensated for on the frontend. Continue reading “2022 FPV Contest: ESP32-Powered FPV Car Uses Javascript For VR Magic”

2022 FPV Contest: Turbo Super Submarine

The projects featured on these pages frequently rule the air, the ground, the rails, and even the waves, but very rarely do they rule the deep. Building a submarine is hard, and thus it’s a challenge not taken on by all but the most courageous of builders. This hasn’t discouraged [Timo] though, who has embarked on the construction of what is shaping up to be a very nice underwater ROV build.

The design is straightforward enough, with a PVC tubing frame carrying thrusters for maneuvering, and a central tubular compartment for the electronics and a camera. Control and power comes via a wired connection, and there is a companion controller holding a Pi Pico interfaced to a PlayStation controller.

So far the craft is a work in progress, and he’s engaged in a battle with water pressure to keep in dry inside. The fittings are all 3D printed, and this means a constant battle with warped prints and collapsing infill. He’s not given up though, and is instead recovering enthusiasm by working on the shore-side controller.

We look forward to seeing this project completed, meanwhile if you’re thirsty for more underwater projects take a look at the glider which won the 2017 Hackaday Prize.