Cyberpack Puts All The Radios Right On Your Back

A disclaimer: Not a single cable tie was harmed in the making of this backpack cyberdeck, and considering that we lost count of the number of USB cables [Bag-Builds] used to connect everything in it, that’s a minor miracle.

The onboard hardware is substantial, starting with a Lattepanda Sigma SBC, a small WiFi travel router, a Samsung SSD, a pair of seven-port USB hubs, and a quartet of Anker USB battery banks. The software defined radio (SDR) gear includes a HackRF One, an Airspy Mini, a USRP B205mini, and a Nooelec NESDR with an active antenna. There are also three USB WiFi adapters, an AX210 WiFi/Bluetooth combo adapter, a uBlox GPS receiver, and a GPS-disciplined oscillator, both with QFH antennas. There’s also a CatSniffer multi-protocol IoT dongle and a Flipper Zero for good measure, and probably a bunch of other stuff we missed. Phew!

As for mounting all this stuff, [Bag-Builds] went the distance with a nicely designed internal frame system. Much of it is 3D printed, but the basic frame and a few rails are made from aluminum. The real hack here, though, is getting the proper USB cables for each connection. The cable lengths are just right so that nothing needs to get bundled up and cable-tied. The correct selection of adapters is a thing of beauty, too, with very little interference between the cables despite some pretty tightly packed gear.

What exactly you’d do with this cyberpack, other than stay the hell away from airports, police stations, and government buildings, isn’t exactly clear. But it sure seems like you’ve got plenty of options. And yes, we’re aware that this is a commercial product for which no build files are provided, but if you’re sufficiently inspired, we’re sure you could roll your own.

Continue reading “Cyberpack Puts All The Radios Right On Your Back”

Portable Multi-SDR Rig Keeps Your Radios Cool

With as cheap and versatile as RTL-SDR devices are, it’s a good idea to have a couple of them on hand for some rainy day hacking. In fact, depending on what signals you’re trying to sniff out of the air, you may need multiple interfaces anyway. Once you’ve amassed this arsenal of software defined radios, you may find yourself needing a way to transport and deploy them. Luckily, [Jay Doscher] has you covered.

His latest creation, the SDR SOLO, is a modular system for mounting RTL-SDRs. Each dongle is encased in its own 3D printed frame, which not only protects it, but makes it easy to attach to the base unit. To keep the notoriously toasty radios cool, each frame has been designed to maximize airflow. You can even mount a pair of 80 mm fans to the bottom of the stack to really get the air moving. The current design is based around the RTL-SDR Blog V4, but could easily be adapted to your dongle of choice.

In addition to the row of SDR dongles, the rig also includes a powered USB hub. Each radio connects to the hub via a short USB cable, which means that you’ll only need a single USB cable running back to your computer. There’s also various mounts and adapters for attaching antennas to the system. Stick it all on the end of a tripod, and you’ve got a mobile radio monitoring system that’ll be the envy of the hackerspace.

As we’ve come to expect, [Jay] put a lot of thought and effort into the CAD side of this project. Largely made of 3D printed components, his projects often feature a rugged and professional look that really stands out.

Decoding Meshtastic With GNU Radio

Meshtastic is a way to build mesh networks using LoRa that is independent of cell towers, hot spots or traditional repeaters. It stands to reason that with an SDR and GNU Radio, you could send and receive Meshtastic messages. That’s exactly what [Josh Conway] built, and you can see a video about the project, Meshtastic_SDR, below. The video is from [cemaxecuter], who puts the library through its paces.

For hardware, the video uses a Canary I as well as the WarDragon software-defined radio kit which is an Airspy R2 and a mini PC running Dragon OS — a Linux distribution aimed at SDR work —  in a rugged case. GNU Radio, of course, uses flows which are really just Python modules strung together with a GUI.

Continue reading “Decoding Meshtastic With GNU Radio”

Getting Started With Radio Astronomy

There are many facets to being a radio hobbyist, but if you’ve ever had the urge to dabble in radio astronomy, check out “The Novice’s Guide to Amateur Radio Astronomy,” a presentation at the 2024 conference of the Society of Amateur Radio Astronomers. In that presentation (see the video below), [Nathan Butts] covers everything from why you should take up the hobby, how to set up a software defined radio (SDR) receiver, and how to repurpose old computers. This is just one of a series of videos recently posted from the conference — check out their channel to see them all.

Unlike optical astronomy, you can listen to the universe by radio during the day or night, rain or shine. You don’t need a dark sky, although these days, a quiet radio location might be hard to find. [Nathan] also points out that some people just want to crunch data collected by others, and that’s fun, too. There are many ways to get involved from designing hardware, writing software, or — of course — just listening.

It has never been easier to get involved. Cheap software-defined radios are perfect for this sort of work, and we all have massive computers and scores of small data-collection computers. Maybe you’ll be the next person to hear a Wow signal. If you are worried about fielding an antenna, many people repurpose satellite dishes.

Continue reading “Getting Started With Radio Astronomy”

Pico-Sized Ham Radio

There are plenty of hobbies around with huge price tags, and ham radio can certainly be one of them. Experienced hams might have radios that cost thousands of dollars, with huge, steerable antennas on masts that can be similarly priced. But there’s also a side to the hobby that throws all of this out of the window in favor of the simplest, lowest-cost radios and antennas that still can get the job done. Software-defined radio (SDR) turned this practice up to 11 as well, and this radio module uses almost nothing more than a microcontroller to get on the air.

The design uses the capabilities of the Raspberry Pi Pico to handle almost all of the radio’s capabilities. The RF oscillator is driven by one of the Pico’s programmable I/O (PIO) pins, which takes some load off of the processor. For AM and SSB, where amplitude needs to be controlled as well, a PWM signal is generated on another PIO which is then mixed with the RF oscillator using an analog multiplexer. The design also includes a microphone with a preamplifier which can be fed into a third PIO; alternatively it can receive audio from a computer via the USB interface. More processor resources are needed when generating phase-modulated signals like RF, but the Pico is still quite capable of doing all of these tasks without jitter larger than a clock cycle.

Of course this only outputs a signal with a few milliwatts of power, so for making any useful radio contacts with this circuit an amplifier is almost certainly needed. With the heavy lifting done by the Pico, though, the amplifier doesn’t need to be complicated or expensive. While the design is simple and low-cost, it’s not the simplest radio possible. This transmitter sends out radio waves using only a single transistor but you will be limited to Morse code only.

Continue reading “Pico-Sized Ham Radio”

2023 Cyberdeck Challenge: A Ham Radio Cyberdeck

Cyberdecks rock because their homebrewed nature lets them feature all kinds of nifty additional functionality. [Kaushlesh] has built his deck with an eye to ham radio use, and it’s a rugged and impressive thing.

The deck is built into a weatherproof enclosure, with various 3D-printed parts helping to integrate the components into the clamshell enclosure. It runs on a Raspberry Pi 4, with [Kaushlesh] springing for the hefty model with 8GB of RAM. It has a 10-inch LCD screen and a rechargable battery pack with an impressive 20 hour battery life, and is intended for use when [Kaushlesh] is out camping or participating in ham radio field days. To that end, it’s equipped with a USB software-defined radio module and a BNC connector for hooking up an external antenna. It also has a game controller that mounts inside, just in case he desires playing a few games on Retropie while he’s out and about. It’s even got storage for a mouse and rocks a decent-sized keyboard inside.

We’d love to tote this to a hamfest for a bit of hacking on the side. It’s not the first ham-themed cyberdeck we’ve seen, either. Now we just need one built for prosciutto. Video after the break.

Continue reading “2023 Cyberdeck Challenge: A Ham Radio Cyberdeck”

Did TETRA Have A Backdoor Hidden In Encrypted Police And Military Radios?

Encrypted communications are considered vital for many organizations, from military users to law enforcement officers. Meanwhile, the ability to listen in on those communications is of great value to groups like intelligence agencies and criminal operators. Thus exists the constant arms race between those developing encryption and those desperately eager to break it.

In a startling revelation, cybersecurity researchers have found a potentially intentional backdoor in encrypted radios using the TETRA (TErrestrial Trunked RAdio) standard. TETRA equipment is used worldwide by law enforcement agencies, military groups, and critical infrastructure providers, some of which may have been unintentionally airing sensitive conversations for decades.

Continue reading “Did TETRA Have A Backdoor Hidden In Encrypted Police And Military Radios?”