Scratch And Sniff Stickers And The Gas Panic Of ’87

Ever wonder how those scratch and sniff stickers manage to pack a punch of aroma into what looks like ordinary paper? The technology behind it is deceptively clever, and has been used everywhere from children’s books to compact discs.

Most Scratch and Sniff stickers are simple nose-based novelties, though they’ve seen other uses as diagnostic tools, too. As Baltimore Gas and Electric discovered in 1987, though, these stickers can also cause a whole lot of hullabaloo. Let’s explore how this nifty technology works, and how it can go—somewhat amusingly—wrong.

The Science

3M developed the scratch and sniff technology in the 1960s. It quickly gained iconic status in the decades that followed. via eBay

At its heart, scratch and sniff technology involves the microencapsulation of tiny smellable particles, which are then impregnated into stickers or other paper products. Microscopic amounts of aromatic materiale are trapped inside gelatin or plastic capsules, and then stuck to paper. When you scratch the surface, these capsules rupture, releasing their aromatic cargo into the air. It’s an elegant feat of materials engineering, originally developed by Gale W. Matson. Working at 3M in the 1960s, he’d been intending to create a new kind of carbonless copy paper.

Scratch and Sniff stickers soon became a popular novelty in the 1970s. The catchy name was perfect—it told you everything you need to know. A children’s book named Little Bunny Follows His Nose was one of the first widespread applications. Released in 1971, it  was entirely based around the whole scratch and sniff concept. Children could read along and scratch various illustrations of peaches, roses and pine needles to see what they smelled like. The book was reprinted multiple times, remaining in publication for over three decades.

Other popular media soon followed. Pop rock band The Raspberries put a scratch and sniff sticker on their album cover in 1972. Director John Waters would go on to release his 1981 film Polyester with an accompanying “Odorama” card, which featured multiple smells for viewers to sniff during the movie. The concept still resurfaces occasionally, though the gimmick is now well-worn. In 2010, Katy Perry’s Teenage Dream album smelled like cotton candy thanks to a scratch-and-sniff treatment on the Deluxe Edition, and King Gizzard & The Lizard Wizard put a similar touch on 2017’s Flying Microtonal Banana. Continue reading “Scratch And Sniff Stickers And The Gas Panic Of ’87”

OSHW Battery Tester Aims To Help Tame Lithium Cells

It’s no exaggeration to say that the development of cheap rechargeable lithium-ion batteries has changed the world. Enabling everything from smartphones to electric cars, their ability to pack an incredible amount of energy into a lightweight package has been absolutely transformative over the last several decades. But like all technologies, there are downsides to consider — specifically, the need for careful monitoring during charging and discharging.

As hardware hackers, we naturally want to harness this technology for our own purposes. But many are uncomfortable about dealing with these high-powered batteries, especially when they’ve been salvaged or come from some otherwise questionable origin. Which is precisely what the Smart Multipurpose Battery Tester from [Open Green Energy] is hoping to address.

Continue reading “OSHW Battery Tester Aims To Help Tame Lithium Cells”

Torque Testing 3D Printed Screws

Unless you’ve got a shop with a well-stocked hardware bin, it’s a trip to the hardware store when you need a special screw. But [Sanford Prime] has a different approach: he prints his hardware, at least for non-critical applications. Just how much abuse these plastic screws can withstand was an open question, though, until he did a little torque testing to find out.

To run the experiments, [Sanford]’s first stop was Harbor Freight, where he procured their cheapest digital torque adapter. The test fixture was similarly expedient — just a piece of wood with a hole drilled in it and a wrench holding a nut. The screws were FDM printed in PLA, ten in total, each identical in diameter, length, and thread pitch, but with differing wall thicknesses and gyroid infill percentages. Each was threaded into the captive nut and torqued with a 3/8″ ratchet wrench, with indicated torque at fastener failure recorded.

Perhaps unsurprisingly, overall strength was pretty low, amounting to only 11 inch-pounds (1.24 Nm) at the low end. The thicker the walls and the greater the infill percentage, the stronger the screws tended to be. The failures were almost universally in the threaded part of the fastener, with the exception being at the junction between the head and the shank of one screw. Since the screws were all printed vertically with their heads down on the print bed, all the failures were along the plane of printing. This prompted a separate test with a screw printed horizontally, which survived to a relatively whopping 145 in-lb, which is twice what the best of the other test group could manage.

[Sanford Prime] is careful to note that this is a rough experiment, and the results need to be taken with a large pinch of salt. There are plenty of sources of variability, not least of which is the fact that most of the measured torques were below the specified lower calibrated range for the torque tester used. Still, it’s a useful demonstration of the capabilities of 3D-printed threaded fasteners, and their limitations.

Continue reading “Torque Testing 3D Printed Screws”

From Cans To Sheet Metal, With Ease

Aluminium drinks cans make a great source of thin sheet metal which can be used for all manner of interesting projects, but it’s safe to say that retrieving a sheet of metal from a can is a hazardous process. Cut fingers and jagged edges are never far away, so [Kevin Cheung]’s work in making an easy can cutter is definitely worth a look.

Taking inspiration from a rotary can opener, he uses a pair of circular blades in an adjustable injection moulded plastic frame. If you’ve used a pipe cutter than maybe you are familiar with the technique, as the blade rotates round the can a few times it slowly scores and cuts through the metal. Doing the job at both ends of the can reveals a tube, which cna be then cut with scissors and flattened to make a rectangular metal sheet. Those edges are probably sharp, but nothing like the jagged finger-cutters you’d get doing the same by hand. The full video can be seen below the break, and the files to 3D print the plastic parts of the cutter can be found at the bottom of a page describing the use of cans to make a shingle roof.

Continue reading “From Cans To Sheet Metal, With Ease”

Modular Breadboard Snaps You Into Benchtop Tidiness

Solderless breadboards are a fantastic tool for stirring the creative juices. In a few seconds, you can go from idea to prototype without ever touching the soldering iron. Unfortunately, the downside to this is that projects tend to expand to occupy all the available space on the breadboard, and the bench surrounding the project universally ends up cluttered with power supplies, meters, jumpers, and parts you’ve swapped in and out of the circuit.

In an attempt to tame this runaway mess, [Raph] came up with this neat modular breadboard system. It hearkens back to the all-in-one prototyping systems we greatly coveted when the whole concept of solderless breadboards was new and correspondingly unaffordable. Even today, combination breadboard and power supply systems command a pretty penny, so rolling your own might make good financial sense. [Raph] made his system modular, with 3D-printed frames that lock together using clever dovetail slots. The prototyping area snaps to an instrumentation panel, which includes two different power supplies and a digital volt-amp meter. This helps keep the bench clean since you don’t need to string leads all over the place. The separate bin for organizing jumpers and tidbits that snaps into the frame is a nice touch, too.

Want to roll your own? Not a problem, as [Raph] has thoughtfully made all the build files available. What’s more, they’re parametric so you can customize them to the breadboards you already have. The only suggestion we have would be that making this compatible with [Zack Freedman]’s Gridfinity system might be kind of cool, too.

The Automatic Battery Charger You Never Knew You Needed

When we saw [Max.K]’s automatic NiMh battery charger float past in the Hackaday tips line, it brought to mind a charger that might be automatic in the sense that any modern microcontroller based circuit would be; one which handles all the voltages and currents automatically. The reality is far cooler than that, a single-cell charger in which the automatic part comes in taking empty cells one by one from a hopper on its top surface and depositing them charged in a bin at the bottom.

Inside the case is a PCB with an RP2040 that controls the whole shop as well as the charger circuitry. A motorized cam with a battery shaped insert picks up a cell from the bin and moves it into the charger contacts, before dumping it into the bin when charged. What impresses us it how slick this device is, it feels like a product rather than a project, and really delivers on the promise of 3D printing. We’d want one on our bench, and after watching the video below the break, we think you will too.

Continue reading “The Automatic Battery Charger You Never Knew You Needed”

Unique 3D Printer Has A Print Head With A Twist

If you’re used to thinking about 3D printing in Cartesian terms, prepare your brain for a bit of a twist with [Joshua Bird]’s 4-axis 3D printer that’s not quite like anything we’ve ever seen before.

The printer uses a rotary platform as a build plate, and has a linear rail and lead screw just outside the rim of the platform that serves as the Z axis. Where things get really interesting is the assembly that rides on the Z-axis, which [Joshua] calls a “Core R-Theta” mechanism. It’s an apt description, since as in a CoreXY motion system, it uses a pair of stepper motors and a continuous timing belt to achieve two axes of movement. However, rather than two linear axes, the motors can team up to move the whole print arm in and out along the radius of the build platform while also rotating the print head through almost 90 degrees.

The kinematic possibilities with this setup are really interesting. With the print head rotated perpendicular to the bed, it acts like a simple polar printer. But tilting the head allows you to print steep overhangs with no supports. [Joshua] printed a simple propeller as a demo, with the hub printed more or less traditionally while the blades are added with the head at steeper and steeper angles. As you can imagine, slicing is a bit of a mind-bender, and there are some practical problems such as print cooling, which [Joshua] addresses by piping in compressed air. You’ll want to see this in action, so check out the video below.

This is a fantastic bit of work, and hats off to [Joshua] for working through all the complexities to bring us the first really new thing we’ve seen in 3D printing is a long time.

Continue reading “Unique 3D Printer Has A Print Head With A Twist”