Bus Pirate 5 Now Shipping

It’s happened to all of us at one time or another. There’s some component sitting on the bench, say an I2C sensor, a new display, or maybe a flash chip, and you want to poke around with it. So you get out the breadboard, wire it to a microcontroller, write some code, flash it…you get the idea. Frankly, it’s all kind of a hassle. Which is why [Ian Lesnet] created the Bus Pirate: a USB multi-tool designed to get you up and running with a new piece of hardware as quickly as possible.

Now, after years of development, the Bus Pirate 5 is available for purchase. Completely redesigned to take advantage of the impressive I/O capabilities of the RP2040, the new Bus Pirate also features a 240 x 320 IPS LCD that can show real-time voltage data and pin assignments. But despite the new display, and the bevy of RGB LEDs lurking under the injection molded enclosure, the primary interface for the device remains the VT100 terminal interface — now with the addition of a color status bar running along the bottom.

Continue reading “Bus Pirate 5 Now Shipping”

Reverse-Engineering The Web-@nywhere Watch For 2001-Era Smartwatch Action

Although smartwatches seem to be just a recent fad, people have been strapping wristwatches to their wrists with all kinds of functionality. Whether a miniscule calculator, a remote control, an organizer or as in the case of the Web-@nywhere Watch a web browser. In the last case only sort of, naturally, as it was released in 2001 and this little early 2000s marvel cost only $85 (or $150 in 2024 USD), so what could it really be capable of? This is the million dollar question that [Cameron Kaiser] sought to find out as he found a new-in-box unit for sale.

The Web-@nywhere watch in action. (Credit: Cameron Kaiser)
The Web-@nywhere watch in action. (Credit: Cameron Kaiser)

Beforehand he knew already that the unit required interaction with a PC-based application to sync the 93 kB of on-watch data, with the required software and remote servers now being very much outdated and/or gone. This required some reverse-engineering to once more bring this watch widget back to life. Along the way it became also quite clear that this watch was designed as a cheap rip-off of the much better 1998 Seiko Ruputer – which later got sold also as the onHand PC – using the same joystick-driven interface.

After some poking around with the Windows-based software that came with the watch [Cameron] quickly realized that while it could establish a serial link with the watch in its cradle, it fully relied on a now defunct FTP server formerly run by the manufacturer, Kinger, along with any games and content on it. Since FTP servers were never archived like HTTP sites, this content is likely gone forever.

Fortunately, the protocol between the PC and the watch is a standard serial link (with parity), so [Cameron] was able to sniff the serial traffic and figure out the protocol, the results of which he has made available on GitHub in the form of a Perl script for transforming text and a C-based application to do the uploading. Now once again Web-@nywhere users can proudly roam the streets with 2024-era website content on their wrists.

Alarm Panel Hack Defeats Encryption By Ignoring It

As frustrating as it may be for a company to lock you into its ecosystem by encrypting their protocols, you have to admit that it presents an enticing challenge. Cracking encryption can be more trouble than it’s worth, though, especially when a device gives you all the tools you need to do an end-run around their encryption.

We’ll explain. For [Valdez], the encrypted communication protocols between a DSC alarm panel and the control pads on the system were serious impediments to integration into Home Assistant. While there are integrations available for these alarm panels, they rely on third-party clouds, which means that not only is your security system potentially telling another computer all your juicy details, but there’s also the very real possibility that the cloud system can either break or be shut down; remember the Chamberlain MyQ fiasco?

With these facts in mind, [Valdez] came up with a clever workaround to DSC encryption by focusing on physically interfacing with the keypad. The device has a common 16×2 LCD and a 25-key keypad, and a little poking around with a multimeter and a $20 logic analyzer eventually showed that the LCD had an HD44780 controller, and revealed all the lines needed to decode the display with an ESP32. Next up was interfacing with the keypad, which also involved a little multimeter work to determine that the keys were hooked up in a 5×5 matrix. Ten GPIOs on the ESP32 made it possible to virtually push any key; however, the ten relays [Valdez] originally used to do the switching proved unwieldy. That led to an optocoupler design, sadly not as clicky but certainly more compact and streamlined, and enabling complete control over the alarm system from Home Assistant.

We love this solution because, as [Valdez] aptly points out, the weakest point in any system is the place where it can’t be encrypted. Information has to flow between the user and the control panel, and by providing the electronic equivalents to eyes and fingers, the underlying encryption is moot. Hats off to [Valdez] for an excellent hack, and for sharing the wealth with the HA community.

Haier Threatens Legal Action Against Home Assistant Plugin Developer

Appliance manufacturer Haier has been integrating IoT features into their newer products, and as is so common these days, users are expected to install their “hOn” mobile application to access them. Not satisfied with that limitation, [Andre Basche] reverse engineered the protocol used by the app, and released a Python library and associated Home Assistant plugin to interface with a wide array of Haier appliances, which includes brands like Hoover, Candy, GE Appliances and others.

Unfortunately, it looks like his efforts have gotten him into a bit of legal hot water. In an issue recently opened on the project’s GitHub page, [Andre] explains the circumstances and legal options that have led him to consider pulling the repositories completely — mostly due to the cost of mounting a legal defense to the cease & desist from Haier Europe.

What’s ironic here is that Haier has been part of the Connectivity Standard Alliance (CSA) since 2022, whose goal is to ‘promote universal open IoT standards’, including Matter.

It’s possible that a legal defense will be mounted against this C&D from Haier within the coming days. Yet regardless of the outcome here, it remains problematic that these IoT-enabled Haier appliances are connected to the Haier servers. Ideally they would be controlled locally, which is the goal of projects like [Miguel Ángel López Vicente]’s ESP Haier, that uses an ESP8266 to connect Haier AC units to the local WiFi and e.g. HA instances, all without requiring internet access.

This is sadly just one more example of why building your own off-line smart home can be such an incredible struggle.

Thanks to [Ar3itrary] for the tip.

Remembering ISDN

We are definitely spoiled these days in terms of Internet access. In much of the world gigabit speeds are common and even cheap plans are likely to be measured in 100s of megabits. But there was a time not long ago when a fast modem received at 56 kilobits per second. If you couldn’t justify a dedicated T1 line and you had a lot of money, you might have thought about ISDN – the Integrated Services Digital Network. [Tedium] has a great retrospective now that the UK has decided to sunset ISDN in 2025. ISDN started in the UK in the mid-1980s.

ISDN offered two 64-kilobit channels that could be bonded to reach 128 kilobits. There was also a slower third channel for commands and signaling (although you could use it for data, too, using an X.25-like protocol). If you wanted phone service, your voice was on one 64K channel and the data on the other. No need to tie up your phone just to get online. Voice was digitized at 8 kHz with 8 bits of G.711 encoding.

Continue reading “Remembering ISDN”

Skip The Radio With This Software-Defined Ultrasound Data Link

We know what you’re thinking: with so many wireless modules available for just pennies, trying to create a physical data link using ultrasonic transducers like [Damian Bonicatto] did for a short-range, low-bitrate remote monitoring setup seems like a waste of time. And granted, there are a ton of simple RF protocols you can just throw at a job like this. Something like this could be done and dusted for a couple of bucks, right?

Luckily, [Damian] wanted something a little different for his wireless link to a small off-grid solar array, which is why he started playing with ultrasound in an SDR framework. The design for his “Software-Defined Ultrasonics” system, detailed in Part 1, has a pair of links, each with two ultrasonic transducers, one for receiving and one for transmitting. Both connect to audio amplifiers with bandpass filters; the received signal is digitized by the ADC built into an Arduino Nano, while the transmitted signal is converted to analog by an outboard DAC.

The transducers are affixed to 3D printed parabolic reflectors, which are aimed at each other over a path length of about 150′ (46 m). Part 2 of the series details the firmware needed to make all this work. A lot of the firmware design is dictated by the constraints introduced by using Arduinos and the 40-kHz ultrasonic carrier, meaning that the link can only do about 250 baud. That may sound slow, but it’s more than enough for [Damian]’s application.

Perhaps most importantly, this is one of those times where going slower helps you to go faster; pretty much everything about the firmware on this system applies to SDRs, so if you can grok one, the other should be a breeze. But if you still need a little help minding your Is and Qs, check out [Jenny]’s SDR primer.

A Dashboard Outside The Car

One of the biggest upsides of open communications standards such as CAN or SPI is that a whole world of vehicle hacking becomes available, from simple projects like adding sensors or computers to a car or even building a complete engine control unit from the ground up. The reverse is true as well; sensors and gauges using one of these protocols can be removed from a car and put to work in other projects. That’s the idea that [John] had when he set about using a vehicle’s dashboard as a information cluster for his home.

The core of the build is an Astra GTE dashboard cluster, removed from its host vehicle, and wired to an Arduino-compatible board, in this case an ESP32. The code that [John] wrote bit-bangs an SPI bus and after some probing is able to address all of the instrument gauges on the dashboard. For his own use at home, he’s also configured it to work with Home Assistant, where each of the gauges is configured to represent something his home automation system is monitoring using a bit mask to send data to specific dials.

While this specific gauge cluster has a lot of vehicle-specific instrumentation and needs a legend or good memory to tie into a home automation system without any other modification, plenty of vehicle gauges are more intuitive and as long as they have SPI they’d be perfect targets for builds that use this underlying software. This project takes a similar tack and repurposes a few analog voltmeters for home automation, adding a paper background to the meters to make them easier to read.

Continue reading “A Dashboard Outside The Car”