Enhiker Helps You Decide If Its A Good Day To Hike

Many of us check the weather before heading out for the day — we want to know if we’re dressed (or equipped) properly to handle what Mother Nature has planned for us. This is even more important if you’re going out hiking, because you’re going to be out in a more rugged environment. To aid in this regard, [Mukesh Sankhla] built a tool called Enhiker.

The concept is simple; it’s intended to tell you everything you need to know about current and pending conditions before heading out on a hike. It’s based around Unihiker, a single-board computer which also conveniently features a 2.8-inch touch screen. It’s a quad-core ARM device that runs Debian and has WiFi and Bluetooth built in, too. The device is able to query its GPS/GNSS receiver for location information, and then uses this to get accurate weather data online from OpenWeatherMap. It makes some basic analysis, too. For example, it can tell you if it’s a good time to go out, or if there’s a storm likely rolling in, or if the conditions are hot enough to make heat stroke a concern.

It’s a nifty little gadget, and it’s neat to have all the relevant information displayed on one compact device. We’d love to see it upgraded further with cellular connectivity in addition to WiFi; this would make it more capable when out and about.

We’ve seen some other neat hiking hacks before, too, like this antenna built with a hiking pole. Meanwhile, if you’ve got your own neat hacks for when you’re out on the trail, don’t hesitate to let us know!

This Week In Security: Footguns, Bing Worms, And Gogs

The world of security research is no stranger to the phenomenon of not-a-vulnerability. That’s where a security researcher finds something interesting, reports it to the project, and it turns out that it’s something other than a real security vulnerability. There are times that this just means a researcher got over-zealous on reporting, and didn’t really understand what was found. There is at least one other case, the footgun.

A footgun is a feature in a language, library, or tool that too easily leads to catastrophic mistake — shooting ones self in the foot. The main difference between a footgun and a vulnerability is that a footgun is intentional, and a vulnerability is not. That line is sometimes blurred, so an undocumented footgun could also be a vulnerability, and one possible solution is to properly document the quirk. But sometimes the footgun should really just be eliminated. And that’s what the article linked above is about. [Alex Leahu] takes a look at a handful of examples, which are not only educational, but also a good exercise in thinking through how to improve them.

Continue reading “This Week In Security: Footguns, Bing Worms, And Gogs”

A Surprisingly Simple Omnidirectional Display

Old-school technology can spark surprising innovations. By combining the vintage zoetrope concept with digital displays, [Mike Ando] created the Andotrope, a surprisingly simple omnidirectional display.

Unlike other 3D displays, the Andotrope lets you view a normal 2D video or images that appear identical irrespective of your viewing angle. The prototype demonstrated in the video below consists of a single smart phone and a black cylinder spinning at 1,800 RPM. A narrow slit in front of each display creates a “scanning” view that our brain interprets as a complete image, thanks to persistence of vision. [Mike] has also created larger version with a higher frame rate, by mounting two tablets back-to-back.

Surprisingly, the Andotrope appears to be an original implementation, and neither [Mike] nor we can find any similar devices with a digital display. We did cover one that used a paper printout in a a similar fashion. [Mike] is currently patenting his design, seeing the potential for smaller displays that need multi-angle visibility. The high rotational speed creates significant centrifugal force, which might limit the size of installations. Critically, display selection matters — any screen flicker becomes glaringly obvious at speed.

This device might be the first of its kind, but we’ve seen plenty of zoetropes over the years, including ones with digital displays or ingenious time-stretching tricks. Continue reading “A Surprisingly Simple Omnidirectional Display”

Learn About Robot Arms By Building Pedro 2.0

Whether you’re a kid or a kid at heart, learning about science and engineering can be a lot more fun if it’s practical. You could sit around learning about motors and control theory, or you could build a robot arm and play with it. If the latter sounds like your bag of hammers, you might like Pedro 2.0.

Pedro 2.0 is a simple 3D-printable robot arm intended for STEAM education. If you’re new to that acronym, it basically refers to the combination of artistic skills with education around science, technology, engineering and mathematics.

The build relies on components that are readily available pretty much around the world—SG90 servo motors, ball bearings, and an Arduino running the show. There’s also an NRF24L01 module for wireless remote control. All the rest of the major mechanical parts can be whipped up on a 3D printer, and you don’t need a particularly special one, either. Any old FDM machine should do the job just fine if it’s calibrated properly.

If you fancy dipping your toes in the world of robot arms, this is a really easy starting point that will teach you a lot along the way. From there, you can delve into more advanced designs, or even consider constructing your own tentacles. The world really is your octopus oyster.

Quick And Very Dirty Repair Gets Smoked PLC Back In The Game

When electronics release the Magic Smoke, more often than not it’s a fairly sedate event. Something overheats, the packaging gets hot enough to emit that characteristic and unmistakable odor, and wisps of smoke begin to waft up from the defunct component. Then again, sometimes the Magic Smoke is more like the Magic Plasma, as was the case in this absolutely smoked Omron programmable logic controller.

Normally, one tasked with repairing such a thing would just write the unit off and order a replacement. But [Defpom] needed to get the pump controlled by this PLC back online immediately, leading to the somewhat unorthodox repair in the video below. Whatever happened to this poor device happened rapidly and energetically, taking out two of the four relay-controlled outputs. [Defpom]’s initial inspection revealed that the screw terminals for one of the relays no longer existed, one relay enclosure was melted open, its neighbor was partially melted, and a large chunk of the PCB was missing. Cleaning up the damaged relays revealed what the “FR” in “FR4” stands for, as the fiberglass weave of the board was visible after the epoxy partly burned away before self-extinguishing.

With the damaged components removed and the dangerously conductive carbonized sections cut away, [Defpom] looked for ways to make a temporary repair. The PLC’s program was locked, making it impossible to reprogram it to use the unaffected outputs. Instead, he redirected the driver transistor for the missing relay two to the previously unused and still intact relay one, while adding an outboard DIN-mount relay to replace relay three. In theory, that should allow the system to work with its existing program and get the system back online.

Did it work? Sadly, we don’t know, as the video stops before we see the results. But we can’t see a reason for it not to work, at least temporarily while a new PLC is ordered. Of course, the other solution here could have been to replace the PLC with an Arduino, but this seems like the path of least resistance. Which, come to think of it, is probably what caused the damage in the first place.

Continue reading “Quick And Very Dirty Repair Gets Smoked PLC Back In The Game”

Creating And Control Of Magnetic Skyrmions In Ferromagnetic Film Demonstrated

Visualization of magnetic skyrmions. (Credit: KRISS)
Visualization of magnetic skyrmions. (Credit: KRISS)

Magnetic skyrmions are stable quasi-particles that can be generated in (some) ferromagnetic materials with conceivable solutions in electronics, assuming they can be created and moved at will. The creation and moving of such skyrmions has now been demonstrated by [Yubin Ji] et al. with a research article in Advanced Materials. This first ever achievement by these researchers of the Korea Research Institute of Standards and Science (KRISS) was more power efficient than previously demonstrated manipulation of magnetic skyrmions in thicker (3D) materials.

Magnetic skyrmions are sometimes described as ‘magnetic vortices’, forming statically stable solitons. For magnetic skyrmions their stability comes from the topological stability, as changing the atomic spin of the atoms inside the skyrmion would require overcoming a significant energy barrier.

In the case of the KRISS researchers, electrical pulses together with a  magnetic field were used to create magnetic skyrmions in the ferromagnetic  (Fe3GaTe2, or FGaT) film, after which a brief (50 µs) electric current pulse was applied. This demonstrated that the magnetic skyrmions can be moved this way, with the solitons moving parallel to the electron flow injection, making them quite steerable.

While practical applications of magnetic skyrmions are likely to be many years off, it is this kind of fundamental research that will enable future magnetic storage and spintronics-related devices.

Featured image: Direct imaging of the magnetic skyrmions. The scale bars represent 300 nm. (Credit:Yubin Ji et al., Adv. Mat. 2024)

Large gears on a bridge in Geneva, Switzerland

Gear Up: A 15-Minute Intro On Involute Gears

If you’re into CNC machining, mechanical tinkering, or just love a good engineering rabbit hole, you’re in for a treat. Substack’s [lcamtuf] has written a quick yet insightful 15-minute introduction to involute gears that’s as informative as it is accessible. You can find the full article here. Compared to Hackaday’s more in-depth exploration in their Mechanisms series over the years, this piece is a beginner-friendly gateway into the fascinating world of gear design.

Involute gears aren’t just pretty spirals. Their unique geometry minimizes friction and vibration, keeps rotational speeds steady, and ensures smooth torque transfer—no snags, no skips. As [lcamtuf] points out, the secret sauce lies in their design, which can’t be eyeballed. By simulating the meshing process between a gear and a rack (think infinite gear), you can create the smooth, rolling movement we take for granted in everything from cars to coffee grinders.

From pressure angles to undercutting woes, [lcamtuf] explores why small design tweaks matter. The pièce de résistance? Profile-shifted gears—a genius hack for stronger teeth in low-tooth-count designs.

Whether you’re into the theory behind gear ratios, or in need of a nifty tool to cut them at home, Hackaday has got you covered. Inspired?