Game Boy? NES? Why Not Both!

If you’re a retro Nintendo fan you can of course carry a NES and a Game Boy around with you, but the former isn’t very portable. Never fear though, because here’s [Chad Burrow], who’s created a neat handheld console that emulates both.

It’s called the Acolyte Handheld, and it sports the slightly unusual choice for these parts of a PIC32 as its main processor. Unexpectedly it can use Sega Genesis controllers, but it has the usual buttons on board for portable use. It can drive either its own LCD or an external VGA monitor, and in a particularly nice touch, it switches between the two seamlessly. The NES emulator is his own work, while Game Boy support comes courtesy of Peanut-GB.

We like the design of the case, and particularly that of the buttons. Could it have been made smaller by forgoing some of the through-hole parts in favour of SMD ones? Quite likely, but though it’s chunky it’s certainly not outsized.

Portable Nintendo-inspired hardware is popular around here, as you can see with this previous handheld NES

Space-Based Datacenters Take The Cloud Into Orbit

Where’s the best place for a datacenter? It’s an increasing problem as the AI buildup continues seemingly without pause. It’s not just a problem of NIMBYism; earthly power grids are having trouble coping, to say nothing of the demand for cooling water. Regulators and environmental groups alike are raising alarms about the impact that powering and cooling these massive AI datacenters will have on our planet.

While Sam Altman fantasizes about fusion power, one obvious response to those who say “think about the planet!” is to ask, “Well, what if we don’t put them on the planet?” Just as Gerard O’Neill asked over 50 years ago when our technology was merely industrial, the question remains:

“Is the surface of a planet really the right place for expanding technological civilization?”

O’Neill’s answer was a resounding “No.” The answer has not changed, even though our technology has. Generative AI is the latest and greatest technology on offer, but it turns out it may be the first one to make the productive jump to Earth Orbit. Indeed, it already has, but more on that later, because you’re probably scoffing at such a pie-in-the-sky idea.

There are three things needed for a datacenter: power, cooling, and connectivity. The people at companies like Starcloud, Inc, formally Lumen Orbit, make a good, solid case that all of these can be more easily met in orbit– one that includes hard numbers.

Sure, there’s also more radiation on orbit than here on earth, but our electronics turn out to be a lot more resilient than was once thought, as all the cell-phone cubesats have proven. Starcloud budgets only 1 kg of sheilding per kW of compute power in their whitepaper, as an example. If we can provide power, cooling, and connectivity, the radiation environment won’t be a showstopper.

Continue reading “Space-Based Datacenters Take The Cloud Into Orbit”

Flopped Humane “AI Pin” Gets An Experimental SDK

The Humane AI Pin was ambitious, expensive, and failed to captivate people between its launch and shutdown shortly after. While the units do contain some interesting elements like the embedded projector, it’s all locked down tight, and the cloud services that tie it all together no longer exist. The devices technically still work, they just can’t do much of anything.

The Humane AI Pin had some bold ideas, like an embedded projector. (Image credit: Humane)

Since then, developers like [Adam Gastineau] have been hard at work turning the device into an experimental development platform: PenumbraOS, which provides a means to allow “untrusted” applications to perform privileged operations.

As announced earlier this month on social media, the experimental SDK lets developers treat the pin as a mostly normal Android device, with the addition of a modular, user-facing assistant app called MABL. [Adam] stresses that this is all highly experimental and has a way to go before it is useful in a user-facing sort of way, but there is absolutely a workable architecture.

When the Humane AI Pin launched, it aimed to compete with smartphones but failed to impress much of anyone. As a result, things folded in record time. Humane’s founders took jobs at HP and buyers were left with expensive paperweights due to the highly restrictive design.

Thankfully, a load of reverse engineering has laid the path to getting some new life out of these ambitious devices. The project could sure use help from anyone willing to pitch in, so if that’s up your alley be sure to join the project; you’ll be in good company.

Iron Nitride Permanent Magnets Made With DIY Ball Mill

Creating strong permanent magnets without using so-called rare earth elements is an ongoing topic of research. An interesting contestant here are iron nitride magnets (α”-Fe16N2), which have the potential to create permanents magnets on-par with with neodymium (Nd2Fe14B) magnets. The challenging aspect with Fe-N magnets is their manufacturing, with recently [Ben Krasnow] giving it a shot over at the [Applied Science] YouTube channel following the method in a 2016 scientific paper by [Yanfeng Jiang] et al. in Advanced Engineering Materials.

This approach uses a ball mill (like [Ben]’s planetary version) with ammonium nitrate (NH4NO3) as the nitrogen source along with iron. After many hours of milling a significant part of the material is expected to have taken on the α”-Fe16N2 phase, after which shock compaction is applied to create a bulk magnet. After the ball mill grinding, [Ben] used a kiln at 200°C for a day to fix the desired phase. Instead of shock compaction, casting in epoxy was used as alternative.

Continue reading “Iron Nitride Permanent Magnets Made With DIY Ball Mill”

Gas Burner Reuses Printer Nozzle For Metalwork

Even if you don’t cast or forge metal yourself, you’re probably aware that you need to get the material very, very hot to make that happen. While some smiths might still stoke coal fires, that’s a minority taste these days; most, like [mikeandmertle] use gas burners to generate the heat. Tired of expensive burners or finicky DIY options [mikeandmertle] built their own Better Burner out of easily-available parts. 

Everything you need to make this burner comes from the hardware store: threaded iron pipes of various sizes, hoses and adapters– except for one key piece: a 3D printer nozzle. The nozzle is used here as the all-important gas jet that introduces flammable gas into the burner’s mixing chamber. A demo video below shows it running with a 0.3mm nozzle, which looks like it is putting out some serious heat, but [mikeandmertle] found that could go out if the breather was opened too wide (allowing too much air in the mixture). Eventually he settled on a 0.4mm nozzle, at least for the LPG that is common down under. If one was to try this with propane, their mileage would differ.

That’s the great thing about using printer nozzles, though: with a tapped M6 hole on the cap of the gas pipe serving as intake, one can quickly and easily swap jets without worrying about re-boring. Printer nozzles are machined to reasonable accuracy and you can get a variety pack with all available sizes (including ones so small you’re probably better off using resin) very cheaply.

These sorts of use-what-you-have-on-hand hacks seem to be [mikeandmertle]’s specialty– we’ve seen their PVC thumb nut and their very simple mostly-wooden wood lathe here before. 

Continue reading “Gas Burner Reuses Printer Nozzle For Metalwork”

A Number Of Microphones… Er, Inductors, Rather

There’s a famous old story about [Charles Steinmetz] fixing a generator for [Henry Ford]. He charged a lot of money for putting a chalk X in the spot that needed repair. When [Ford] asked for an itemization, the bill read $1 for the chalk, and the balance for knowing where to draw the X. With today’s PCB layout tools, it seems easy to put components down on a board. But, as [Kasyan TV] points out in the video below, you still have to know where to put them.

The subject components are inductors, which are particularly picky about placement, especially if you have multiple inductors. After all, inductors affect one another — that’s how transformers work. So there are definite rules about good and bad ways to put a few inductors on a board.

Continue reading “A Number Of Microphones… Er, Inductors, Rather”