Hackaday Podcast Ep 322: Fake Hackaday Writers, New Retro Computers, And A Web Rant

We’re back in Europe for this week’s Hackaday podcast, as Elliot Williams is joined by Jenny List. In the news this week is the passing of Ed Smylie, the engineer who devised the famous improvised carbon dioxide filter that saved the Apollo 13 astronauts with duct tape.

Closer to home is the announcement of the call for participation for this year’s Hackaday Supercon; we know you will have some ideas and projects you’d like to share.

Interesting hacks this week include a new Mac Plus motherboard and Doom (just) running on an Atari ST, while a LoRa secure messenger and an astounding open-source Ethernet switch captivated us on the hardware front. We also take a dive into the Mouse programming language, a minimalist stack-based environment from the 1970s. Among the quick hacks are a semiconductor dopant you can safely make at home, and a beautiful Mac Mini based cyberdeck.

Finally, we wrap up with our colleague [Maya Posch] making the case for a graceful degradation of web standards, something which is now sadly missing from so much of the online world, and then with the discovery that ChatGPT can make a passable show of emulating a Hackaday scribe. Don’t worry folks, we’re still reassuringly meat-based.

Insert MP3 podcast link here.

Continue reading “Hackaday Podcast Ep 322: Fake Hackaday Writers, New Retro Computers, And A Web Rant”

POV On The Flipper Zero

The Flipper Zero can do all kinds of neat stuff, like helping you cut keys or decode various radio transmissions. However, until now, it hasn’t been particularly adept at persistence of vision tasks. The LightMessenger was designed for that very purpose, and [Derek] recently wrote up a deep-dive into the interesting gadget.

The device doing its job.

The LightMessenger is a hardware add-on module developed by LAB401 in collaboration with [TIX LE GEEK] for the Flipper Zero. In persistence-of-vision mode, you can plug it in via the GPIO header and display messages in the air by shaking it around. Even better, you can do so in color, with a height resolution of 16 pixels—meaning you can display some nice text or basic graphics. You can key in different text or select and edit bitmaps using the utility on the Flipper screen itself. There’s even a simple flashlight mode, because why not?

In the second part of [Derek]’s write-up, he also goes into detail on the development and manufacturing process for the device.

Files are on GitHub for the curious. We’ve gone over the basics of POV projects before, too.

Continue reading “POV On The Flipper Zero”

This Week In Security: Signal DRM, Modern Phone Phreaking, And The Impossible SSH RCE

Digital Rights Management (DRM) has been the bane of users since it was first introduced. Who remembers the battle it was getting Netflix running on Linux machines, or the literal legal fight over the DVD DRM decryption key? So the news from Signal, that DRM is finally being put to use to protect users is ironic.

The reason for this is Microsoft Recall — the AI powered feature that takes a snapshot of everything on the user’s desktop every few seconds. For whatever reason, you might want to exempt some windows from Recall’s memory window. It doesn’t speak well for Microsoft’s implementation that the easiest way for an application to opt out of the feature is to mark its window as containing DRM content. Signal, the private communications platform, is using this to hide from Recall and other screenshotting applications.

The Signal blogs warns that this may be just the start of agentic AI being rolled out with insufficient controls and permissions. The issue here isn’t the singularity or AI reaching sentience, it’s the same old security and privacy problems we’ve always had: Too much information being collected, data being shared without permission, and an untrusted actor having access to way more than it should. Continue reading “This Week In Security: Signal DRM, Modern Phone Phreaking, And The Impossible SSH RCE”

Behold Self-Synchronizing, Air-Flopping Limbs That Hop And Swim

Dutch research institute [AMOLF] shows off a small robot capable of walking, hopping, and swimming without any separate control system. The limbs synchronize thanks to the physical interplay between the robot’s design and its environment. There are some great videos on that project page, so be sure to check it out.

A kinked soft tube oscillates when supplied with continuous air.

Powered by a continuous stream of air blown into soft, kinked tubular limbs, the legs oscillate much like the eye-catching “tube man” many of us have seen by roadsides. At first it’s chaotic, but the movements rapidly synchronize into a meaningful rhythm that self-synchronizes and adapts. On land, the robot does a sort of hopping gait. In water, it becomes a paddling motion. The result in both cases is a fast little robot that does it all without any actual control system, relying on physics.

You can watch it in action in the video, embedded below. The full article “Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion” is also available.

Gait control is typically a nontrivial problem in robotics, but it doesn’t necessarily require a separate control system. Things like BEAM robotics and even the humble bristlebot demonstrate the ability for relatively complex behavior and locomotion to result from nothing more than the careful arrangement of otherwise simple elements.

Continue reading “Behold Self-Synchronizing, Air-Flopping Limbs That Hop And Swim”

Crookes Tube

Foil Leyden Jar Helps Bring Crookes Tube To Life

It might be too soon to consider the innards of the old CRT monitor at the back of your closet to be something worth putting on display in your home or workshop. For that curio cabinet-worthy appeal, you need to look a bit further back. Say, about 150 years. Yes, that’ll do. A Crookes tube, the original electron beam-forming vacuum tube of glass, invented by Sir William Crookes et al. in the late 19th century, is what you need.

And a Crookes tube is what [Markus Bindhammer] found on AliExpress one day. He felt that piece of historic lab equipment was asking to be put on display in proper fashion. So he set to work crafting a wooden stand for it out of a repurposed candlestick, a nice piece of scrap oak, and some brass feet giving it that antique mad-scientist feel.

After connecting a high voltage generator and switch, the Crookes tube should have been all set, but nothing happened when it was powered up. It turned out that a capacitance issue was preventing the tube from springing to life. Wrapping the cathode end of the tube in aluminum foil, [Markus] formed what is effectively a Leyden jar, and that was the trick that kicked things into action.

As of this writing, there are no longer any Crookes tubes that we could find on AliExpress, so you’ll have to look elsewhere if you’re interested in showing off your own 19th century electron-streaming experiment. Check out the Crookes Radiometer for some more of Sir Williams Crookes’s science inside blown glass.

Continue reading “Foil Leyden Jar Helps Bring Crookes Tube To Life”

Atari ST desktop with Doom shortcut

Running DOOM On An Atari ST

If you grew up with a beige Atari ST on your desk and a faint feeling of being left out once Doom dropped in 1993, brace yourself — the ST strikes back. Thanks to [indyjonas]’s incredible hack, the world now has a working port of DOOM for the Atari STe, and yes — it runs. It’s called STDOOM, and even though it needs a bit of acceleration or emulation to perform, it’s still an astonishing feat of retro-software necromancy.

[indyjonas] did more than just recompile and run: he stripped out chunks of PC-centric code, bent GCC to his will (cheers to Thorsten Otto’s port), and shoehorned Doom into a machine never meant to handle it. That brings us a version that runs on a stock machine with 4MB RAM, in native ST graphics modes, including a dithered 16-colour mode that looks way cooler than it should. The emotional punch? This is a love letter to the 13-year-old Jonas who watched Doom from the sidelines while his ST chugged along faithfully. A lot of us were that kid.

Sound is still missing, and original 8MHz hardware won’t give you fluid gameplay just yet — but hey, it’s a start. Want to dive in deeper? Read [indyjonas]’ thread on X.

The French Chinon nuclear power plant with its low-profile, forced-draft cooling towers. (Credit: EDF/Marc Mourceau)

Recovering Water From Cooling Tower Plumes With Plume Abatement

Electrostatic droplet capture system installed on an HVAC condenser. (Credit: Infinite Cooling)

As a common feature with thermal power plants, cooling towers enable major water savings compared to straight through cooling methods. Even so, the big clouds of water vapor above them are a clear indication of how much cooling water is still effectively lost, with water vapor also having a negative impact on the environment. Using so-called plume abatement the amount of water vapor making it into the environment can be reduced, with recently a trial taking place at a French nuclear power plant.

This trial featured electrostatic droplet capture by US-based Infinite Cooling, which markets it as able to be retrofitted to existing cooling towers and similar systems, including the condensers of office HVAC systems. The basic principle as the name suggests involves capturing the droplets that form as the heated, saturated air leaves the cooling tower, in this case with an electrostatic charge. The captured droplets are then led to a reservoir from which it can be reused in the cooling system. This reduces both the visible plume and the amount of cooling water used.

In a 2021 review article by [Shuo Li] and [M.R. Flynn] in Environmental Fluid Mechanics the different approaches to plume abatement are looked at. Traditional plume abatement designs use parallel streams of air, with the goal being to have condensation commence as early as possible rather than after having been exhausted into the surrounding air. Some methods used a mesh cover to provide a surface to condense on, while a commercially available technology are condensing modules which use counterflow in an air-to-air heat exchanger.

Other commercial solutions include low-profile, forced-draft hybrid cooling towers, yet it seems that electrostatic droplet capture is a rather new addition here. With even purely passive systems already seeing ~10% recapturing of lost cooling water, these active methods may just be the ticket to significantly reduce cooling water needs without being forced to look at (expensive) dry cooling methods.

Top image: The French Chinon nuclear power plant with its low-profile, forced-draft cooling towers. (Credit: EDF/Marc Mourceau)