Pico-Sized Ham Radio

There are plenty of hobbies around with huge price tags, and ham radio can certainly be one of them. Experienced hams might have radios that cost thousands of dollars, with huge, steerable antennas on masts that can be similarly priced. But there’s also a side to the hobby that throws all of this out of the window in favor of the simplest, lowest-cost radios and antennas that still can get the job done. Software-defined radio (SDR) turned this practice up to 11 as well, and this radio module uses almost nothing more than a microcontroller to get on the air.

The design uses the capabilities of the Raspberry Pi Pico to handle almost all of the radio’s capabilities. The RF oscillator is driven by one of the Pico’s programmable I/O (PIO) pins, which takes some load off of the processor. For AM and SSB, where amplitude needs to be controlled as well, a PWM signal is generated on another PIO which is then mixed with the RF oscillator using an analog multiplexer. The design also includes a microphone with a preamplifier which can be fed into a third PIO; alternatively it can receive audio from a computer via the USB interface. More processor resources are needed when generating phase-modulated signals like RF, but the Pico is still quite capable of doing all of these tasks without jitter larger than a clock cycle.

Of course this only outputs a signal with a few milliwatts of power, so for making any useful radio contacts with this circuit an amplifier is almost certainly needed. With the heavy lifting done by the Pico, though, the amplifier doesn’t need to be complicated or expensive. While the design is simple and low-cost, it’s not the simplest radio possible. This transmitter sends out radio waves using only a single transistor but you will be limited to Morse code only.

Continue reading “Pico-Sized Ham Radio”

USB-C Power Supply Pushes Almost 2 KW

When the USB standard was first revealed, a few peripherals here and there adopted it but it was far from the “universal” standard implied by its name. It was slow, had limited ability to power anything, and its plug-and-play capability was spotty at best. The modern USB standard, on the other hand, has everything its predecessors lacked including extremely high data transfer rates and the ability to support sending or receiving a tremendous amount of power. [LeoDJ] is taking that latter capability to the extreme, with this USB-C power supply that can deliver 1.7 kW of power.

The project was inspired by the discovery of an inexpensive USB-PD (power delivery) module which is capable of delivering either 100W or 65W. After extensive testing, to see if the modules were following the USB standard and how they handled heat, [LeoDJ] grabbed 20 of the 65W modules and another four of the 100W modules and assembled them all into an array, held together in a metal chassis that also functions as a heat sink. The modules receive their DC power from two server power supplies wired together in series.

There was some troubleshooting, including soldering difficulty and a short circuit, but with all the kinks ironed out this power supply can deliver nearly 2 kW to an array of USB-capable devices and, according to the amount of thermal testing done, can supply that power nearly indefinitely. It’s an over-the-top power supply with a small niche of uses, but to see it built is satisfying nonetheless. For more information on all of the perks of working with USB-C, check out this tell-all we published last year.

Brand-New PCB Makes Replica TRS-80 Possible

If like us, you missed out on the TRS-80 Model I back when it first came out, relax .With this brand-new PCB that’s a trace-for-trace replica of the original and a bunch of vintage parts, you can build your own from scratch.

Now, obviously, there are easier ways to enjoy the retro goodness that is the 46-year-old machine that in many ways brought the 8-bit hobby computing revolution to the general public’s attention. Sadly, though, original TRS-80s are getting hard to come by, and those that are in decent enough shape to do anything interesting are commanding top dollar. [RetroStack]’s obvious labor of love project provides the foundation upon which to build a brand new TRS-80 as close as possible to the original.

The PCB is revision G and recreates the original in every detail — component layout, connectors, silkscreen, and even trace routing. [RetroStack] even replicated obvious mistakes in the original board, like through-holes that were originally used to fixture the boards for stuffing, and some weird unused vias. There are even wrong components, or at least ones that appear on production assemblies that don’t show up in the schematics. And if you’re going to go through with a build, you’ll want to check out the collection of 3D printable parts that are otherwise unobtainium, such as the bracket for rear panel connectors and miscellaneous keyboard parts.

While we love the devotion to accuracy that [RetroStack] shows with this project, we know that not everyone is of a similar bent. Luckily there are emulators and clones you can build instead. And if you’re wondering why anyone would devote so much effort to half-century-old technology — well, when you know, you know.

Thanks to [Stephen Walters] for the tip.

Feature image: Dave Jones, CC BY-SA 4.0, via Wikimedia Commons

 

Open Source Needs A New Mission: Protecting Users

[Bruce Perens] isn’t very happy with the current state of Free and Open Source Software (FOSS), and an article by [Rupert Goodwins] expounds on this to explain Open Source’s need for a new mission in 2024, and beyond. He suggests a focus shift from software, to data.

The internet as we know it and all the services it runs are built on FOSS architecture and infrastructure. None of the big tech companies would be where they are without FOSS, and certainly none could do without it. But FOSS has its share of what can be thought of as loopholes, and in the years during which the internet has exploded in growth and use, large tech companies have found and exploited all of them. A product doesn’t need to disclose a single line of source code if it’s never actually distributed. And Red Hat (which [Perens] asserts is really just IBM) have simply stopped releasing public distributions of CentOS.

In addition, the inherent weak points of FOSS remain largely the same. These include funding distributions, lack of user-focused design, and the fact that users frankly don’t understand what FOSS offers them, why it’s important, or even that it exists at all.

A change is needed, and it’s suggested that the time has come to move away from a focus on software, and shift that focus instead to data. Expand the inherent transparency of FOSS to ensure that people have control and visibility of their own data.

While the ideals of FOSS remain relevant, this isn’t the first time the changing tech landscape has raised questions about how things are done, like the intersection of bug bounties and FOSS.

What do you think? Let us know in the comments.

Not Dead Yet: Microsoft Peripherals Get Licensed To Onward Brands

After Microsoft announced in April of 2023 that they’d cease selling branded peripherals – including keyboards and mice – as part of its refocusing on Surface computers and accessories, there was an internet-wide outcry about this demise. Yet now it would seem that Microsoft has licensed the manufacturing of these peripherals to Incase, who will be selling a range of ‘Designed By Microsoft’ peripherals starting in 2024. Incase itself is a brand owned by Onward Brands, which is the portfolio manager for Incase and other brands.

Although Microsoft has been selling peripherals since the 1980s (with the Microsoft Mouse appearing in 1983), it seems that we now have to rely on this new company that is said to use the same suppliers as Microsoft did. As for what we can expect to see return with Incase, it’s effectively the same assortment of items that Microsoft was selling at the beginning of 2023, so we will likely not see the return of the Natural 4000 or other peripherals that saw their life cut short before this.

If Incase does manage to relaunch these products this year, which items would you be most interested in purchasing, and how many dozens of those did you manage to stock up on in April when the news broke?

Adding AI To NPCs Is Easy, Doing It Well Is Hard

Adding natural language interfaces to software is easier than ever, and that led [creikey] to prototype a game that hinges on communicating with NPCs. The prototype went through multiple iterations during which he mainly discovered things that did not work well. Ultimately, it led to [creikey] settling on a western-themed game called Dante’s Cowboy which he hopes to release as an experiment. He begins talking about the game around the 4:43 mark in the video, which directly precedes a recording of a presentation he gives at as an indie developer.

Games typically revolve around the player manipulating entities in an environment in order to make things happen. This interaction drives engagement and interesting decisions. But while adding natural language AI to NPCs makes them easy to talk with, talking by itself is a shallow interaction. Convincing NPCs to do things? That’s complex and far more difficult to implement. [creikey] realized the limitations large language models (LLMs) had and worked to overcome them to make a unique game experience.

The challenges boil down to figuring out how to drive meaningful interaction, aligning AI behavior with the gameplay context, and managing API costs. In his words, “it’s been a learning experience to figure out where [natural language AI] even belongs in a game, if it belongs at all.”

We’ve previously seen ChatGPT used to grant NPCs the ability to communicate naturally which is a fascinating tech demo, but gameplay-wise can boil down to being a complicated alternative to pressing a button. As [creikey] discovered, adding this technology into games in a way that feels meaningful takes a new kind of work.

Continue reading “Adding AI To NPCs Is Easy, Doing It Well Is Hard”

How To Build A Fully Offline Smart Home, Or Why You Should Not

So-called ‘smart home’ appliances and gadgets have become an ever-more present thing the past years, with nary a coffeemaker, AC unit or light bulb for sale today that doesn’t have an associated smartphone app, cloud service and/or subscription to enable you to control it from the beach during your vacation, or just set up automation routines to take tedium out of your busy schedule. Yet as much as [Calvin Wankhede] loves home automation, he’d very much like for it to not stop working the moment his internet connection goes down, or the company running the service goes bankrupt. This is where his journey to create an off-line alternative smart home based around Home Assistant and other (open) software began.

Although Home Assistant (HA) itself has become significantly easier to use, what becomes readily apparent from [Calvin]’s journey is that setting up and managing your own smart home infrastructure is a never-ending project. A project that involves finding compatible hardware that can tie into HA, whether or not without reflashing the firmware, resolving configuration issues and other assorted fun. If you are into this kind of thing, it is of course a blast, and it’s a good feeling when it finally all works.

Unfortunately, interoperability across smart home and similar IoT devices is still a far-off dream, even with the introduction of Thread and Matter (which incidentally are among the worst product names to search for, period), as Matter’s uptake is pretty abysmal. This thus leaves off-line smart homes mostly as the domain of the tech-inclined in search of a hobby.