A persistence-of-vision business card which displays information when shaken (not stirred).

2024 Business Card Challenge: Make Them Shake Your Handiwork

Before COVID, people traditionally sealed their initial introduction to each other with a handshake. Nowadays, that activity seems kind of questionable. But you can still give them something to shake if you build this persistence of vision (POV) business card from [chaosneon] to show your credentials in blinkenlights form.

As you might have guessed, the input comes from a tilt switch. The user simply shakes the card back and forth, and the sensor detects the direction and cadence of the shake. Cleverly, the pattern plays forward-ways on the swing, and backwards on the back stroke, which just reinforces the POV effect. Don’t worry about how slow or fast to shake it, because the timing adjusts for your speed.

The first version used individual white LEDs, hand-soldered to an ATtiny2313. Now, in the updated version which you can see in the demo video after the break, [chaosneon] is using an RGB NeoPixel strip, which only needs one data wire to connect to the microcontroller. Thanks to this, [chaosneon] was able to to downsize to an ATtiny85.

Continue reading “2024 Business Card Challenge: Make Them Shake Your Handiwork”

A business card-sized, solar-powered weather station.

2024 Business Card Challenge: Weather Or Not You Get The Job

What’s the easiest way to break the ice with someone you’ve just met? If you’re not immediately talking shop, than it’s probably the time-tested subject of the weather. So what better way to get the conversation started than with a lovely solar-powered circuit sculpture of a business card that displays the weather?

We love that the frame has a built-in stand; that’s a great touch that really turns this card into something that someone might keep on their desk long-term. The brains of this operation is an ESP32 TTGO E-paper board, which checks the battery voltage first before connecting to Wi-Fi and getting data from the OpenWeatherMap API. It displays the information and then goes to sleep for 15 minutes.

For power, [BLANCHARD Jordan] is using a 5 V solar panel and a small battery from an old vape pen. We love to see projects that keep those things out of the landfills, so don’t sleep on using them.

You have just a few weeks left to enter the 2024 Business Card Challenge, so fire up those soldering irons and get hackin’!

A business card-sized love detector in a 3D-printed package.

2024 Business Card Challenge: Who Do You Love?

When you hand your new acquaintance one of your cards, there’s a chance you might feel an instant connection. But what if you could know almost instantly whether they felt the same way? With the Dr. Love card, you can erase all doubt.

As you may have guessed, the card uses Galvanic Skin Response. That’s the fancy term for the fact that your skin’s electrical properties change when you sweat, making it easier for electricity to pass through it. There are two sensors, one on each short end of the card where you would both naturally touch it upon exchange. Except this time, if you want to test the waters, you’ll have to wait 10-15 seconds while Dr. Love assesses your chemistry.

The doctor in this case is an RP2040-LCD-0.96, which is what it sounds like — a Raspberry Pi Pico with a small LCD attached. For the sensors, [Un Kyu Lee] simply used 8mm-wide strips of nickel. If you want to build your own, be sure to check out the build guide and watch the video after the break for a demonstration of Dr. Love in action.

Continue reading “2024 Business Card Challenge: Who Do You Love?”

2024 Business Card Challenge: Tiny MIDI Keyboard

The progress for electronics over the past seven decades or so has always trended towards smaller or more dense components. Moore’s Law is the famous example of this, but even when we’re not talking about transistors specifically, technology tends to get either more power efficient or smaller. This MIDI keyboard, for example, is small enough that it will fit in the space of a standard business card which would have been an impossibility with the technology available when MIDI first became standardized, and as such is the latest entry in our Business Card Challenge.

[Alana] originally built this tiny musical instrument to always have a keyboard available on the go, and the amount of features packed into this tiny board definitely fits that design goal. It has 18 keys with additional buttons to change the octave and volume, and has additional support for sustain and modulation as well. The buttons and diodes are multiplexed in order to fit the IO for the microcontroller, a Seeed Studio Xiao SAMD21, and it also meets the USB-C standards so it will work with essentially any modern computer available including most smartphones and tablets so [Alana] can easily interface it with Finale, a popular music notation software.

Additionally, the project’s GitHub page has much more detail including all of the Arduino code needed to build a MIDI controller like this one. This particular project has perhaps the best size-to-usefulness ratio we’ve seen for compact MIDI controllers thanks to the USB-C and extremely small components used on the PCB, although the Starshine controller or these high-resolution controllers are also worth investigating if you’re in the market for compact MIDI devices like this one.

Continue reading “2024 Business Card Challenge: Tiny MIDI Keyboard”

A stack of PCB business cards that can play Snake on an 8x8 LED matrix.

2024 Business Card Challenge: Snakes On A Business Card

Once [Lambert the Maker] saw the Arduboy, he knew the thing was ripe for remixing into a business card with an 8×8 LED matrix instead of an OLED screen. [Lambert] already has a PCB business card for work, but it looks like it doesn’t do anything. So this Snake-playing card is for their personal information.

The brains of this operation is an STM32F0, which required a bit of finesse when it came to programming the LEDs. According to the datasheet, the max current through a given GPIO pin is 30 mA. The LEDs are running at 20 mA through the limiting resistor, so the code only turns on one LED at a time and makes sure the previous one is off first. The whole screen is updated every 125 ms, and persistence of vision takes care of making the animation look right.

In the short videos after the break, you’ll see a preview followed by brief videos on versions one and two. The prototype was built in 2020, when the board house only offered green PCBs with their assembly service. Fast forward to 2024, when the board house is now offering colors other than green.

Version two is actually thinner than a credit card, and features tiny buttons instead of cap-sense pads for input. [Lambert] also added a floating ADC pin that acts as a random number generator, placing the apple in a new location every time the game is powered on.

Continue reading “2024 Business Card Challenge: Snakes On A Business Card”

A PCB business card with a built-in 4x4 tic-tac-toe game on the back.

2024 Business Card Contest: A Game For Two

If you want to make a good first impression on someone, it seems like the longer you can keep them talking, the better. After all, if they want to keep talking, that’s a pretty good sign that even if you don’t become business partners, you might end up friends. What better way to make an acquaintance than over a friendly game of tic-tac-toe?

This one will probably take them by surprise, being a 4×4 matrix rather than the usual 3×3, but that just makes it more interesting. The front of the card has all the usual details, and the back is a field of LEDs and micro switches. Instead of using X and O, [Edison Science Corner] is using colors — green for player one, and red for player two. Since playing requires the taking of turns, the microcontroller lights up green and red with alternating single-button presses.

Speaking of, the brains of this operation is an ATMega328P-AU programmed with Arduino. If you’d like to make your own tic-tac-toe business card, the schematic, BOM, and code are all available. Be sure to check out the build and demo video after the break.

Continue reading “2024 Business Card Contest: A Game For Two”

2024 Business Card Challenge: Adding Some Refinement To Breadboard Power Supplies

For small electronics projects, prototyping a design on a breadboard is a must to iron out kinks in the design and ensure everything works properly before a final version is created. The power supply for the breadboard is often overlooked, with newcomers to electronics sometimes using a 9V battery and regulator or a cheap USB supply to get a quick 5V source. We might eventually move on to hacking together an ATX power supply, or the more affluent among us might spring for a variable, regulated bench supply, but this power supply built specifically for breadboards might thread the needle for this use case much better than other options.

The unique supply is hosted on a small PCB with two breakout rails that connect directly to the positive and negative pins on a standard-sized breadboard. The power supply has two outputs, each of which can output up to 24V DC and both are adjustable by potentiometers. To maintain high efficiency and lower component sizes, a switch-mode design is used to provide variable DC voltage. A three-digit, seven-segment display at the top of the board keeps track of whichever output the user selects, and the supply itself can be powered by a number of inputs, including USB-C or lithium batteries.

Continue reading “2024 Business Card Challenge: Adding Some Refinement To Breadboard Power Supplies”