Flopped Humane “AI Pin” Gets An Experimental SDK

The Humane AI Pin was ambitious, expensive, and failed to captivate people between its launch and shutdown shortly after. While the units do contain some interesting elements like the embedded projector, it’s all locked down tight, and the cloud services that tie it all together no longer exist. The devices technically still work, they just can’t do much of anything.

The Humane AI Pin had some bold ideas, like an embedded projector. (Image credit: Humane)

Since then, developers like [Adam Gastineau] have been hard at work turning the device into an experimental development platform: PenumbraOS, which provides a means to allow “untrusted” applications to perform privileged operations.

As announced earlier this month on social media, the experimental SDK lets developers treat the pin as a mostly normal Android device, with the addition of a modular, user-facing assistant app called MABL. [Adam] stresses that this is all highly experimental and has a way to go before it is useful in a user-facing sort of way, but there is absolutely a workable architecture.

When the Humane AI Pin launched, it aimed to compete with smartphones but failed to impress much of anyone. As a result, things folded in record time. Humane’s founders took jobs at HP and buyers were left with expensive paperweights due to the highly restrictive design.

Thankfully, a load of reverse engineering has laid the path to getting some new life out of these ambitious devices. The project could sure use help from anyone willing to pitch in, so if that’s up your alley be sure to join the project; you’ll be in good company.

Software Hacks Unlock Cheap Spectrometer

A spectrometer is one of those tools that many of us would love to have, but just can’t justify the price of. Sure there are some DIY options out there, but few of them have the convenience or capability of what’s on the commercial market. [Chris] from Zoid Technology recently found a portable spectrometer complete with Android application for just $150 USD on AliExpress which looked very promising…at least at first.

The problem is that the manufacturer, Torch Bearer, offers more expensive models of this spectrometer. In an effort to push users into those higher-priced models, arbitrary features such as data export are blocked in the software. [Chris] first thought he could get around this by reverse engineering the serial data coming from the device (interestingly, the spectrometer ships with a USB-to-serial adapter), but while he got some promising early results, he found that the actual spectrometer data was obfuscated — a graph of the results looked like stacks of LEGOs.

Continue reading “Software Hacks Unlock Cheap Spectrometer”

ClockworkPi Unveils New PicoCalc Handheld

Do you like scientific calculators? Don’t bother answering that question, you’re reading Hackaday so we already know the answer. We also know you’re a fan of building things yourself and open source, which makes us fairly sure you’ll be just as interested in the recently announced ClockworkPi PicoCalc as we are.

On the surface, it looks like a chunky scientific calculator, though on further inspection you’ll note it comes equipped with a QWERTY keyboard. But open up the case and what you’ve really got is an elaborate carrier board for the Raspberry Pi Pico. The PicoCalc supports all variants of the microcontroller, but realistically we can’t think of any reason that you wouldn’t just use the latest version.

With the MCU connected, you’ll have access to the PicoCalc’s 320×320 4-inch IPS screen, backlit I2C-connected keyboard, SD card slot, 8 MB PSRAM, and dual PWM speakers. Power is provided by a pair of 18650 cells (which you’ll need to supply on your own), and the board has the necessary circuitry to charge them up over USB-C.

Everything is housed in an injection molded case, but the project page says all the necessary CAD files will be eventually be released under the GPL v3 so you can 3D print or CNC your own enclosure. For now though, the only thing of note that seems to be in the PicoCalc GitHub repository is a PCB schematic.

The software side of things is a little less clear. The page mentions a BASIC interpreter, MP3 playback, and support for various programming languages, but we get the impression that’s just a list of stuff you can run on the Pi Pico. There are a few images that clearly show the PicoCalc actually being used as a calculator however, so there may be an official firmware yet to be revealed.

The PicoCalc kit is on sale now, and will set you back $75 USD — which actually includes a first-generation Pi Pico, on the off chance that you don’t already have a few laying around. We’ve been impressed with the previous offerings from ClockworkPi, so assuming this new kit maintains that same build quality, it seems like a fair enough price.

Fixing An Unpleasant SD Card Slot Issue In A NanoVNA

SD cards & the much smaller microSD cards are found on many devices, with the card often accessible from outside the enclosure. Unfortunately there’s a solid chance that especially small microSD cards will find their way past the microSD card reader slot and into the enclosure. This is what happened to [Rob] of the SevenFortyOne Radios and Repairs channel on YouTube with a NanoVNA unit. While shaking the unit, you can clearly hear the microSD card rattling inside, courtesy of the rather large gap above the card slot.

After a quick teardown and extracting the lost microSD card, the solution to prevent this is a simple bit of foam stuck on top of the microSD card slot, so that the too large opening in the enclosure is now fully blocked. It’s clearly a bit of a design fail in this particular NanoVNA unit, worsened by the tiny size of the card and having to use a fingernail to push the card into the slot as it’s so far inside the enclosure.

While [Rob] seems to blame himself for this event, we’d chalk it mostly up to poor design. It’s an issue that’s seen with certain SBC enclosures and various gadgets too, where losing a microSD card is pretty much a matter of time, and hugely fiddly at the best of times. That said, what is your preferred way of handling microSD card insertion & removal in devices like these?

Continue reading “Fixing An Unpleasant SD Card Slot Issue In A NanoVNA”

PCB Design Review: M.2 SSD Splitter

Today’s PCB design review is a board is from [Wificable]. iI’s a novel dual-SSD laptop adapter board! See, CPUs and chipsets often let you split wide PCIe links into multiple smaller width links. This board relies on a specific laptop with a specific CPU series, and a BIOS mod, to put two M.2 NVMe SSDs into a single SSD slot of a specific series’ laptop.

This board has two crucial factors – mechanical compatibility, and electrical function. Looking into mechanics, it’s a 0.8 mm thick PCB that plugs into a M.2 socket, and it has sockets for two SSDs on it – plenty of bending going on. For electronics, it has a PCIe REFCLK clock buffer, that [Wificable] found on Mouser – a must have for PCIe bifurcation, and a must-work for this board’s core! Apart from that, this is a 4-layer board, it basically has to be for diffpairs to work first-try.

Of course, the clock buffer chip is the main active component and the focus of the board, most likely mistakes will happen there – let’s look at the chip first.

Continue reading “PCB Design Review: M.2 SSD Splitter”

Radio Apocalypse: HFGCS, The Backup Plan For Doomsday

To the extent that you have an opinion on something like high-frequency (HF) radio, you probably associate it with amateur radio operators, hunched over their gear late at night as they try to make contact with a random stranger across the globe to talk about the fact that they’re both doing the same thing at the same time. In a world where you can reach out to almost anyone else in an instant using flashy apps on the Internet, HF radio’s reputation as somewhat old and fuddy is well-earned.

Like the general population, modern militaries have largely switched to digital networks and satellite links, using them to coordinate and command their strategic forces on a global level. But while military nets are designed to be resilient to attack, there’s only so much damage they can absorb before becoming degraded to the point of uselessness. A backup plan makes good military sense, and the properties of radio waves between 3 MHz and 30 MHz, especially the ability to bounce off the ionosphere, make HF radio a perfect fit.

The United States Strategic Forces Command, essentially the people who “push the button” that starts a Very Bad Day™, built their backup plan around the unique properties of HF radio. Its current incarnation is called the High-Frequency Global Communications System, or HFGCS. As the hams like to say, “When all else fails, there’s radio,” and HFGCS takes advantage of that to make sure the end of the world can be conducted in an orderly fashion.

Continue reading “Radio Apocalypse: HFGCS, The Backup Plan For Doomsday”

DME With A Twist Of LimeSDR

Navigating aircraft today isn’t like the old days. No more arrows painted on a barn roof or rotating airway beacons. Now, there are a host of radio navigation aids. GPS, of course, is available. But planes often use VOR to determine a bearing to a known point and DME — distance measuring equipment — to measure the distance to that point. DME operates around 1000 MHz and is little more than a repeater. An airplane sends a pair of pulses, and times how long it takes for the DME to repeat them. [Daniel Estévez] has been monitoring these transmissions with a LimeSDR.

Like most repeaters, the DME transponders listen on one frequency and transmit on another. Those frequencies are 63 MHz apart. This poses a challenge for some types of SDRs which have limits on bandwidth.

Continue reading “DME With A Twist Of LimeSDR”