Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Offset-Stem Keycaps

Image by [Leo_keeb] via reddit
Love it or hate it, I think this is a really cool idea. [Leo_keeb] has designed a new set of keycaps for the Happy Hacking Keyboard (HHKB). The keycaps’ stems are offset to the left or right in order to turn this once-staggered keyboard into an ortholinear object.

So, how do they feel? There is a slight wobble to them, according to [Leo_keeb] — it’s a bit like pressing the left or right side of Tab. But the actuation is smooth, they say.

As you can see, these resin keycaps weren’t designed with the typical Cherry MX profile in mind, they are made for the Topre capacitive key switches of the HHKB. (No, those aren’t weird rubber domes.)

When I asked about sharing the STLs, [Leo_keeb] advised me that they might be willing to release STLs for  Cherry MX switches in the US layout if there is enough interest.

Continue reading “Keebin’ With Kristina: The One With The Offset-Stem Keycaps”

Extracting SecOC Keys From A 2021 Toyota RAV4 Prime

With the recently introduced SecOC (Secure Onboard Communication) standard, car manufacturers seek to make the CAN bus networks that form the backbone of modern day cars more secure. This standard adds a MAC (message authentication code) to the CAN messages, which can be used to validate that these messages come from a genuine part of the car, and not from a car thief or some third-party peripheral.

To check that it isn’t possible to circumvent SecOC, [Willem Melching] and [Greg Hogan] got their hands on the power steering (EPS) unit of a Toyota RAV4 Prime, as one of the first cars to implement this new security standard.

The 2021 Toyota RAV4 Prime's power steering unit on the examination bench. (Credit: Willem Melching)
The 2021 Toyota RAV4 Prime’s power steering unit on the examination bench. (Credit: Willem Melching)

As noted by [Willem], the ultimate goal is to be able to run the open source driver assistance system openpilot on these SecOC-enabled cars, which would require either breaking SecOC, or following the official method of ‘rekeying’ the SecOC gateway.

After dumping the firmware of the EPS Renesas RH850/P1M-E MCU via a voltage fault injection, the AES-based encryption routines were identified, but no easy exploits found in the main application. This left the bootloader as the next target.

Ultimately they managed to reverse-engineer the bootloader to determine how the update procedure works, which enabled them to upload shellcode. This script then enabled them to extract the SecOC keys from RAM and send these over the CAN bus. With these keys the path is thus opened to allow any device to generate CAN messages with valid SecOC MACs, effectively breaking encryption. Naturally, there are many caveats with this discovery.

Continue reading “Extracting SecOC Keys From A 2021 Toyota RAV4 Prime”

A USB3SUN adapter, connected to a SPARCstation on one end and to a keyboard on another, with the OLED screen showing status icons

An Open SPARCstation USB Keyboard&Mouse Adapter

Got a SPARCstation? You might have had to deal with the proprietary DIN port used for keyboard and mouse input. However, you need not look for outdated hardware anymore – we’ve recently found an adapter project called [usb3sun], which lets you use a regular USB keyboard and mouse instead! Designed by [delan] from [the funny computer museum], the usb3sun adapter is featureful, open-source, and even comes with four blog posts describing its inner workings and development process!

Based on a Pi Pico board, this adapter has a ton of quality of life features – an OLED screen for status display, extra USB port and headers for debugging, a buzzer to emulate bell and click functions, power LEDs, and all the ports you would expect. The OLED screen is needed just because of how many features this adapter’s firmware has, and you’re bound to get more – the [usb3sun] firmware is being actively updated to this day. It’s as if this adapter aims to do all it possibly could help you with – for instance, one of the firmware updates has added idprom reprogramming features, which, as [delan] tells us, lets you boot your workstation with a dead NVRAM battery.

You can order the adapter PCBs yourself, you can breadboard it by following detailed instructions from [delan], or you can get a fully assembled and tested [usb3sun] adapter on Tindie! This adapter will seriously help you in your SPARCstation forays, and, if you don’t happen to own a SPARCstation, you can always emulate SunOS.

NIF’s Laser Fusion Experiment’s Energy Gain Passes Peer Review

Back in December of 2022, a team of researchers at the USA’s National Ignition Facility (NIF) announced that they had exceeded ‘scientific breakeven’ with their laser-based inertial confinement fusion (ICF) system. Their work has now been peer-reviewed and passed scrutiny, confirming that the energy put into fusing a small amount of deuterium-tritium fuel resulted in a net gain (Q) of 1.5.

Laser Bay 2, one of NIF's two laser bays
Laser Bay 2 at the NIF.

The key take-away here of course remains that ICF is not a viable method of producing energy, as we detailed back in 2021 when we covered the 1.3 MJ yield announcement, and again in 2022 following the subject of this now completed peer review.  The sheer amount of energy required to produce the laser energy targeting the fuel capsule and loss therein, as well as the energy required to manufacture each of these fuel capsules (Hohlraum) and sustaining a cycle make it a highly impractical proposition for anything except weapons research.

Despite this, it’s good to see that the NIF’s ICF research is bearing fruit, even if for energy production we should look towards magnetic confinement fusion (MCF), which includes the many tokamaks active today like Japan’s JT-60SE, as well as stellarators like Germany’s Wendelstein 7-X and other efforts to make MCF a major clean-energy source for the future.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Really Snazzy Folding Keyboard

Sometimes you just have to throw your hat in the ring, and throw it hard. Here is [mkdxdx]’s rockin’ EVH 5150-esque take on the keyboard business. The Mriya foldable keyboard aims to be and sport a number of things, and it does all of them in great style. I could totally see my fingers flying over this thing somewhere in the wild, with robots fighting in the distance.

Image by [mkdxdx] via Hackaday.IO
I have to say I really like the fact that [mkdxdx] uses thumb keys here for what I can only assume are Enter, Space, and Backspace. It’s a nice compromise between compactness and ergonomics. I also really like the totally impractical but quite cool-looking connector that runs between the top and bottom.

If the color scheme looks familiar, you’re probably remembering [mkdxdx]’s first-place-winning entry into the 2023 Cyberdeck Contest. This RP2040-based keyboard might just end up as part of a larger project, but it’s already an outstanding peripheral. We can’t wait to see the next phase, should there be one for this keyboard.

Continue reading “Keebin’ With Kristina: The One With The Really Snazzy Folding Keyboard”

Hackaday Podcast Episode 252: X1Plus Hacks Bambu, Scotto Builds A Katana Keyboard, And Bass Puts Out Fire

This week, Editor-in-Chief Elliot Williams and Kristina Panos met up to discuss the best hacks of the previous week. It’s CES time once again in Las Vegas, and you know what that means — some wacky technologies like this AI pet door that rejects dead mice.

Then it’s on to What’s That Sound, which Kristina managed to nail for once. Can you get it? Can you figure it out? Can you guess what’s making that sound this week? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

But then it’s on to the hacks, beginning with a new keyboard from [Joe Scotto] and an exploration of all you can do with an LED strip, like 1D fireworks and roller coasters without any moving parts. From there, we marvel at the ability of sound waves to extinguish flames, and the tech behind life as a quadriplegic. Finally, we examine not one, but two of Jenny List’s finely-crafted rants, one about web browsers, and the other about the responsible use of new technology.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast Episode 252: X1Plus Hacks Bambu, Scotto Builds A Katana Keyboard, And Bass Puts Out Fire”

Liquid Tin Could Be The Key To Cheap, Plentiful Grid Storage

Once expensive and difficult to implement, renewable energy solutions like wind and solar are now often the cheapest options available for generating electricity for the grid. However, there are still some issues around the non-continuous supply from these sources, with grid storage becoming a key technology to keep the lights on around the clock.

In the quest for cost-effective grid storage, a new player has entered the arena with a bold claim: a thermal battery technology that’s not only more than 10 times cheaper than lithium-ion batteries, but also a standout in efficiency compared to traditional thermal battery designs. Fourth Power is making waves with its “sun in a box” energy storage technology, and aims to prove its capabilities with an ambitious 1-MWh prototype.

Hot Stuff

Simple heating elements turn electricity into heat, putting it into liquid tin that then heats large graphite blocks. Credit: Fourth Power, Vimeo screenshot

The principle behind Fourth Power’s technology is deceptively simple: when there’s excess renewable energy available, use it to heat something up. The electrical energy is thus converted and stored as heat, with the idea being to convert it back to electricity when needed, such as at night time or when the wind isn’t blowing. This concept isn’t entirely new; other companies have explored doing this with everything from bricks to molten salt. Fourth Power’s approach involves heating large blocks of graphite to extremely high temperatures — as high as 2,500 °C (4,530 °F). Naturally, the hotter you go, the more energy you can store. Where the company’s concept gets interesting is how it plans to recover the heat energy and turn it back into electricity.

Continue reading “Liquid Tin Could Be The Key To Cheap, Plentiful Grid Storage”