Better Robots Through Gallium

In the movie Terminator 2, the T-1000 robot was made of some kind of liquid metal that could change shape among other interesting things. According to a chemical engineer at North Carolina State University, there may be something to the idea. [Michael Dickey] has been experimenting with gallium, a liquid metal, that scientists think may unlock a new generation of flexible devices.

The most common liquid metal is mercury, of course, and it has its uses. However, its toxicity has led to a reduction in its use. Gallium has low toxicity and also doesn’t easily evaporate. What can you do with it? Check out the video below to see a very simple demonstration of the liquid metal lifting a small — very small — weight with an electrical impulse.

Continue reading “Better Robots Through Gallium”

Robotic Hand Uses Old CD-ROM Parts

Robotic arms and actuators are compelling things to watch, and as popular among the maker set as they are crucial to modern industry. [kthod2000] built a design of their own, which relies on parts salvaged from old CD-ROM drives. 

The arm itself is constructed of many components which appear to be 3D printed, with three main motors visible along its length. These look to be the eject motors harvested from several optical drives, which usefully come with a threaded screw on the output shaft that makes them perfect for a linear-drive application. Run by a TMC2208 driver via a microcontroller, the eject motors control the motion of several stages of the robot arm as it moves up and down.

The intention seems to be that one of these three-tiered assemblies could act as a single finger. Ganged up multiple times, this could allow the creation of something akin to a full five-digit robot hand. [kthod2000] has also done plenty of work on the software side of things that handles controlling the arm. The kinematics can all be simulated on screen in concert with the real motion of the arm.

We’ve seen similar builds before, too, like this plotter built out of scrap DVD drives. They’re a great source of quality electromechanical components for small projects, so it’s no surprise to see them put to work here. Video after the break.

Continue reading “Robotic Hand Uses Old CD-ROM Parts”

PSP Turned Robot Remote With Custom Software

There’s no question that Sony’s PlayStation Portable (PSP) was an impressive piece of hardware when it was released in 2004, but for all its technical wizardry, it wasn’t able to shake Nintendo’s vice-like grip on the handheld market. Perhaps that explains why we still see so many nostalgia-fueled hacks for Nintendo’s Game Boy and Dual Screen (DS) systems, while PSP hacks tend to be few and far between.

But looking at projects like this one that turn the PSP into a capable robot controller (video, embedded below) we can’t help but wonder if the community has been missing out. Thanks to an open source software development kit for the system, [iketsj] was able to write a WiFi controller program that can be run on any PSP with a homebrew-compatible firmware.

The other side of the equation is a simple robot powered by an ESP8266. To take control of the bot, the user connects their handheld to the WiFi network being offered by the MCU and fires up the controller application from the main menu. It’s all very slick, and the fact that you don’t need to make any modifications to the PSP’s hardware is a huge plus. From the video after the break we get the impression that the remote software is pretty simplistic in its current form, but we imagine the only really limitations are how good you are at writing C code for what by today’s standards would be considered a fairly resource constrained system. We’d love to see that widescreen display lit up and showing live first-person video from the bot’s perspective.

Many of the PSP hack’s we’ve seen over the years have been about repurposing the hardware, or in some cases, replacing the system’s internals with something raspberry flavored. Those projects have certainly been interesting in their own ways, but we really like the idea of being able to push a largely stock system into a new role just by writing some custom code for it.

Continue reading “PSP Turned Robot Remote With Custom Software”

Sisyphean Ball Race Robot Toils Gracefully, Magnetically

Aren’t ball races and marble runs fun? Wouldn’t they be so much more enjoyable if you didn’t have to climb back up the ladder each time, as it were, and reset the thing? [Johannes] wrote in to tell us about a wee robot with the Sisyphean task of setting a ball bearing on a simple but fun course, collecting it from the end, and airlifting it back to the start of the track.

[Johannes] built this ‘bot to test small-scale resin printing strength as well as the longevity of some tiny linear actuators from Ali that may or may not be available at a moment’s notice. The point was to see how these little guys fared when connected directly to an Arduino or other microcontroller, rather than going the safer route with a motor driver of some kind.

Some things worked well, like the c-clips that keep the axles together, and using quick pulses to release the magnetically-linked ball from the gripper. Other aspects didn’t work out so well. Tiny resin parts do not respond well to force, for starters. And then there’s the actuators themselves. The connections are fragile and the motors are weak, but they vary wildly in quality from piece to piece, so YMMV. Some lose steps, and others occasionally seize. But you wouldn’t know any of that from the graceful movement capture in the video below. Although it appears to be automated, the bot is under remote control because of the motor issues.

Not into ball runs? There are other Sisyphean tasks available, such as moving sand around in the name of meditation.

Continue reading “Sisyphean Ball Race Robot Toils Gracefully, Magnetically”

stages of moving a wire and enveloping an object

Attack Of The Magnetic Slime Robots

[Li Zhang] and his colleagues at the Chinese University of Hong Kong (CUHK) have developed a blob of goo that can navigate complex surroundings, grow an ‘arm’, grasp a wire and move it, encapsulate a small object and carry it. As explained in the research paper, the secret is in the non-Newtonian material the bots are made of.

You can make a similar concoction at home, usually called “slime”, with corn starch and water. Deformed slowly, it will move like a fluid. Deformed rapidly, it behaves like an elastic solid. CUHK’s version is polyvinyl alcohol, glass coated NdFeB microparticles (neodymium magnets), and borax.

This dual behavior lets the robot do amazing things.  Placed on a surface, they made the blob extend pseudopods by dragging underneath with a magnet, then used a circular field to make it grasp and transport a wire. They used a similar technique in the other axis to swallow an object. The CUHK group are promoting this as a way to retrieve foreign objects in the body (like an accidentally swallowed button cell).

Researchers will need to develop a non-toxic coating before it can be used in the body.

Nd magnets are made by sintering Nd2O3 or NdFeB in a strong magnetic field. Nd2O3 is available from SigmaAldrich at only slightly eye watering prices. Polyvinyl alcohol and borax are easily available. This seems like a hobbyist do-able project (Nd is toxic, use precautions).

We’ve been covering micro robots for some time. Back in 2014 we covered swarm micro robots. This project uses an external field to move a small Nd magnet, and all the way back in 2014 we covered early work in this field.

Continue reading “Attack Of The Magnetic Slime Robots”

Robot arm in Blender

Animate Your Robot In Blender

You’ve built a robot crammed full of servos and now you settle down for the fun part, programming your new dancing animatronic bear! The pain in your life is just beginning. Imagine that you decide the dancing bear should raise it’s arm. If you simply set a servo position, the motor will slew into place as fast as it can. What you need is an animation, and preferably with smooth acceleration.

You could work through all the math yourself. After half an hour of fiddling with the numbers, the bear is gracefully raising it’s arm like a one armed zombie. And then you realize that the bear has 34 more servos.

render of industrial robot type arm with pedestal, base, upperarm and lowerarm and IK ball

Fortunately for everybody who’s done the above, there’s Blender. It’s all about creating smooth motion for animations and computer graphics. Making robot motion with Blender is, if not easy, at least tolerable. We made a sample project, a 3-axis robot arm to illustrate. It has a non-moving pedestal, rotating base, upper arm, and lower arm. We’ll be animating it first in Blender and then translating the file over to something we can use to drive the servos with a little script.

Now, Blender is notorious for a difficult user interface. The good news is that, with revision 2.9, it moved to a much more normal interface. It still definitely is a large program, with 23 different editors and literally thousands of controls, but we’ll only be using a small subset to make our robot move. We won’t teach you Blender here, because there are thousands of great Blender tutorials online.  You want to focus on animation, and the Humane Rigging series is particularly recommended.

Continue reading “Animate Your Robot In Blender”

Hackaday Podcast 167: Deadly Art Projects, Robot Lock Pickers, LED Horticulture, And Good Samaritan Repairs

Join Hackaday Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi for a review of all the tech that’s fit to print. Things kick off with an update about the Hackaday Prize and a brief account of the 2022 Vintage Computer Festival East. Then we’ll talk about an exceptionally dangerous art project that’s been making the rounds on social media, a smart tea kettle that gave its life so that others can hack their device’s firmware, some suspiciously effective plant grow lights, and the slippery slope of remote manufacturer kill switches. We’ll wrap things up with some thought provoking discussion about personal liability as it pertains to community repair groups, and a close look at what makes synthetic oil worth spending extra on.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments below!

Direct Download link.

Continue reading “Hackaday Podcast 167: Deadly Art Projects, Robot Lock Pickers, LED Horticulture, And Good Samaritan Repairs”