Creating 1 Um Features The Hacker Way

[Breaking Taps] has done some lithography experiments in the past, including some test patterns and a rudimentary camera sensor. But now, it’s time to turn it up a notch with 1µm garage semiconductor ambitions.

The e-beam lithography he’s done in the past can achieve some impressive resolutions, but they aren’t very fast; a single beam of electrons needs to scan over the entire exposure area, somewhat like a tiny crayon. That’s not very scalable; he needed a better solution to make 1µm semiconductors.

Test patterns from the first attempt

In his quest, he starts by trying to do maskless photolithography, using a literal projector to shine light on the target area all at once. After hacking a projector devkit apart, replacing blue with ultraviolet and adding custom optics, it’s time for a test. The process works for the most part but can’t produce fine details the way [Breaking Taps] needs. Unfortunately, fixing that would mean tearing the whole set-up apart for the umpteenth time.
Continue reading “Creating 1 Um Features The Hacker Way”

Illustrative models of collinear ferromagnetism, antiferromagnetism, and altermagnetism in crystal-structure real space and nonrelativistic electronic-structure momentum space. (Credit: Libor Šmejkal et al., Phys. Rev. X, 2022)

Altermagnetism In Manganese Telluride And Others: The Future Of Spintronics?

Magnetic materials are typically divided into ferromagnetic and antiferromagnetic types, depending on their magnetic moments (electron spins), resulting in either macroscopic (net) magnetism or not. Altermagnetism is however a recently experimentally confirmed third type that as the name suggests alternates effectively between these two states, demonstrating a splitting of the spin energy levels (spin-split band structure). Like antiferromagnets, altermagnets possess a net zero magnetic state due to alternating electron spin, but they differ in that the electronic band structure are not Kramers degenerate, which is the feature that can be tested to confirm altermagnetism. This is the crux of the February 2024 research paper in Nature by [J. Krempaský] and colleagues.

Specifically they were looking for the antiferromagnetic-like vanishing magnetization and ferromagnetic-like strong lifted Kramers spin degeneracy (LKSD) in manganese telluride (MnTe) samples, using photoemission spectroscopy in the UV and soft X-ray spectra. A similar confirmation in RuO2 samples was published in Science Advances by [Olena Fedchenko] and colleagues.

What this discovery and confirmation of altermagnetism means has been covered previously in a range of papers ever since altermagnetism was first proposed in 2019 by [Tomas Jungwirth] et al.. A 2022 paper published in Physical Review X by [Libor Šmejkal] and colleagues details a range of potential applications (section IV), which includes spintronics. Specific applications here include things like memory storage (e.g. GMR), where both ferromagnetic and antiferromagnetics have limitations that altermagnetism could overcome.

Naturally, as a fairly new discovery there is a lot of fundamental research and development left to be done, but there is a good chance that within the near future we will see altermagnetism begin to make a difference in daily life, simply due to how much of a fundamental shift this entails within our fundamental understanding of magnetics.

Heading image: Illustrative models of collinear ferromagnetism, antiferromagnetism, and altermagnetism in crystal-structure real space and nonrelativistic electronic-structure momentum space. (Credit: Libor Šmejkal et al., Phys. Rev. X, 2022)

A man's hand with a black ring touches a white box. It is square on the bottom and has a sloped top. Various AC, 12V, and USB ports adorn its surface. It's approximately the size of a human head.

DIY Off Grid Battery Pack From EV Battery

Car camping gets you out in the great outdoors, but sometimes it’s nice to bring a few comforts from home. [Ed’s Garage] has taken a module from a salvaged EV and turned it into a handy portable power station.

With 2.3 kWh of storage from the single Spark EV module, the battery pack can power [Ed]’s hotplate, lights, fridge, and other electric accessories while camping away from shore power. The inverter he selected can provide up to 1500W of AC power and his 12V converter can do 150W. Several USB ports and a wireless charging pad adorn the outside next to the waterproof AC ports. He even printed a small magnetic flashlight to reuse the light from the inverter which uses an 18650 cell that can be charged from the big battery in a charger built into the exterior of the pack.

The battery management system (BMS) has a Bluetooth module allowing for remote monitoring of state of charge and setting the maximum and minimum charge points for the pack. The whole thing comes in at 73 pounds (33 kg), and while he had originally thought to give it wheels to roll, he changed his mind once he thought more about what sort of wheels he’d need to maneuver the thing in the backcountry.

If you’re thinking of building your own power pack, why not checkout a few other builds for inspiration like this one from tool batteries or one designed to charge directly from a solar panel. Be sure you checkout our guide on how to select a BMS if you’re going to use a lithium-based chemistry.

Continue reading “DIY Off Grid Battery Pack From EV Battery”

Hackaday Podcast Episode 281: Metal Clay, Desiccants, Silica Gel, And Keeping Filament Dry

This week on the Podcast, it’s Kristina’s turn to bloviate alongside Editor-in-Chief Elliot Williams. First up in the news: our fresh new contest has drawn three entries already! That’s right, the 2024 Tiny Games Challenge is underway. You have until September 10th to show us your best tiny game, whether that means tiny hardware, tiny code, or a tiny BOM.

Then it’s on to What’s That Sound, which sounded familiar to Kristina, but she couldn’t place it. Can you get it? Can you figure it out? Can you guess what’s making that sound? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

Then it’s on to the hacks, beginning with a hack to print metal and a way to weld wood, along with a photo-resistor-based, single-pixel camera. We’ll talk desiccants carbon fiber, and Baron Harkonnen. Finally, we discuss the troubles of keeping hygroscopic materials from degrading, and have a klatch about Keebin’ with Kristina.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast Episode 281: Metal Clay, Desiccants, Silica Gel, And Keeping Filament Dry”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Key Cap Map

So, [zyumbik]’s trademark seems to be sexing things up, and the Artsey layout did not escape their gaze. This is the Sexy Artsey. Let’s back up a bit.

A pink and purple 10-key keyboard with a rotary encoder, spikes, and a custom area with LEGO attached.
Image by [zyumbik] via reddit
Artsey is a keyboard layout for chording, and this keyboard is built for it. It’s a one-handed keyboard meant for pressing multiple keys at a time to produce each character. With some use, [zyumbik] discovered that the Taipo layout might be a better fit, so there are currently some elements of both.

If you’d like to make this adorable keyboard, everything is waiting for you to download, including files for various thingamabobs you can stick on the side there where the rainbow is now. There’s also a groovy flower version of the knob.

Controller-wise, you can use a Seeed Studio Xiao in either BLE or RP2040 format, or the Waveshare RP2040 Zero. The firmware is written in ZMK.

Remember the death metal macropad? (Who could forget that tentacled nightmare?) This is the same creator. Kind of hard to believe, innit? Well, except for the spikes. Apparently they’re for thumb discipline.

Via reddit

Continue reading “Keebin’ With Kristina: The One With The Key Cap Map”

Modern In-Circuit Emulator For The 6809

The Motorola 6809, released in 1978, was the follow-up to their 6800 from four years earlier. It’s a powerful little chip with many 16-bit features, although it’s an 8-bit micro at heart. Despite its great improvements over the 6800, and even technical superiority over the Z80 and 6502 (hardware multiply, for example!), it never reached the same levels of success that those chips did. However, there are still some famous systems, such as the TRS-80 Colour Computer, which utilized the chip and are still being hacked on today. [Ted] is clearly a fan of the 6809, as he used a Teensy 4.1 to create a cycle-exact, drop-in 6809 emulator!

A small interposer board rearranges the Teensy pinout to match the 6809, as well as translating voltage levels from 3.3V to 5V. With careful design, the Teensy matches the cycle diagrams in the Motorola datasheet precisely, and so should be able to run any applications written for the chip! A great test was booting Extended Colour BASIC for the TRS-80 CoCo 2 and running some test BASIC programs. Any issues with opcode decoding or timing would certainly be exposed while running an interpreted language like BASIC. After this successful test, it was time to let the Teensy’s ARM Cortex-M7 rip and see what it could do.

Continue reading “Modern In-Circuit Emulator For The 6809”

Watch This RC Jet Thrust System Dance

An EDF (electric duct fan) is a motor that basically functions as a jet engine for RC aircraft. They’re built for speed, but to improve maneuverability (and because it’s super cool) [johnbecker31] designed a 3D-printable method of adjusting the EDF’s thrust on demand.

Before 3D printers were common, making something like this would have been much more work.

The folks at Flite Test released a video in which they built [john]’s design into a squat tester jet that adjusts thrust in sync with the aircraft’s control surfaces, as you can see in the header image above. Speaking of control surfaces, you may notice that test aircraft lacks a rudder. That function is taken over by changing the EDF’s thrust, although it still has ailerons that move in sync with the thrust system.

EDF-powered aircraft weren’t really feasible in the RC scene until modern brushless electric motors combined with the power density of lithium-ion cells changed all that. And with electronics driving so much, and technology like 3D printers making one-off hardware accessible to all, the RC scene continues to be fertile ground for all sorts of fascinating experimentation. Whether it’s slapping an afterburner on an EDF or putting an actual micro jet engine on an RC car.

Continue reading “Watch This RC Jet Thrust System Dance”