If You Want An Expensive Chair Just Print Your Own

The Magis Spun chair is a weird piece. It’s basically a kind of seat with a round conical base that stops it from sitting still in one place. Instead, it rolls and pivots around when you sit on it, which is apparently quite fun. They’re expensive though, which gave [Morley Kert] a neat idea. Why not 3D print one instead?

Obviously 3D printing a sofa wouldn’t be straightforward, but the Magis Spun is pretty much just a hunk of plastic anyway. The real thing is made with rotational molding. [Morley] suspected he could make one for less than the retail price with 3D printing.

With no leads on a big printer, he decided to go with a segmented design. He whipped up his basic 3D model through screenshots from the manufacturer’s website and measurements of a display model in a store. After print farming the production, the assembly task was the next big challenge. If you’re interested in doing big prints with small printers, this video is a great way to explore the perils of this idea.

Ultimately, if you want to print one of these yourself, it’s a big undertaking. It took 30-50 print days, or around 5 days spread across 15 printers at Slant 3D’s print farm. It used around $300-400 of material at retail prices, plus some extra for the epoxy and foam used to assemble it.

The finished product was killer, though, even if it looks a little rough around the edges. It rolls and pivots just like the real thing.

We don’t feature a lot of chair hacks on Hackaday, but we do feature some! Video after the break.

Continue reading “If You Want An Expensive Chair Just Print Your Own”

FLOSS Weekly Episode 791: It’s All About Me!

This week David Ruggles chats with Jonathan Bennett about his origin story! What early core memory does Jonathan pin his lifelong computer hobby on? And how was a tense meeting instrumental to Jonathan’s life outlook? And how did Jonathan manage to score a squashable brain toy from an equipment manufacturer? Watch the whole show to find out!

Continue reading “FLOSS Weekly Episode 791: It’s All About Me!”

Supercon 2023: Why More Hackers Should Earn Their Wings

Hacking has taken on many different meanings over the years, but if you’re here reading these words, we’ll assume your definition is pretty close to ours. To hack is to explore and learn, to find new and (hopefully) better ways of doing things. Or at least, that’s part of it. The other part is to then take what you learned and share it with others. Do that enough, and soon you’ll find yourself part of a community of like-minded individuals — which is where things really start getting interesting.

Here at Hackaday the objects of our attention are, with the occasional exception, electronic devices of some sort or another. Perhaps an old piece of gear that needs a modern brain transplant, or a misbehaving consumer gadget that could benefit from the addition of an open source firmware. But just as there are different ways to interpret the act of hacking, there’s plenty of wiggle room when it comes to what you can hack on.

In his talk during the 2023 Hackaday Supercon, Tom Mloduchowski makes the case that more hackers should be getting involved with aviation. No, we’re not talking about flying drones, though he does cover that during the presentation. This is the real deal. Whether you want to take a quick joyride in a small plane, become a professional pilot, or even build and operate your own experimental aircraft, this talk covers it all.

Continue reading “Supercon 2023: Why More Hackers Should Earn Their Wings”

Bringing The 555 Mini-Notebook To Video

Like many of us [AnotherMaker] is a fan of the classic Forrest Mims electronics books, specifically, the Engineer’s Mini-Notebook series. They were great sources of inspiration, but at the time, he couldn’t afford to actually build most of the circuits described. Now as an adult, he decided to go through the 555 Timer IC Circuits Mini-Notebook, full of example circuits and explanations, all in Mims’ trademark handwritten style, and build all the circuits for real. And so, a series of YouTube videos are currently being released going over every circuit, how it works, and looking at waveforms on an oscilloscope!

So, PCBs were designed, each containing four of the circuits from the book. With the Mims circuit diagram on one side of the screen and the PCB on the other, [AnotherMaker] goes into a good amount of detail explaining how each circuit works, referring to the schematic and oscilloscope as needed. Each part in the series focuses on the next circuits in order, and eventually the whole series will cover every single circuit in the book.

It’s a great series of videos for anyone learning electronics, especially those who would like to learn about one of the most produced integrated circuits of all time! It’s also an excellent way to bring a fresh perspective to this classic book, while simultaneously bringing the content to a wider audience via online video.

Continue reading “Bringing The 555 Mini-Notebook To Video”

PCB Design Review: HAB Tracker With ATMega328P

Welcome to the Design Review Central! [VE3SVF] sends us their board, and it’s a HAB (High Altitude Balloon) tracker board. It’s got the venerable ATMega28P on it, a LoRa modem and a GPS module, and it can be powered from a LiIon battery. Stick this board with its battery onto a high-altitude balloon, have it wake up and transmit your coordinates every once in a while, and eventually you’ll find it in a field – if you’re lucky. Oherwise, it will get stuck hanging on a tree branch, and you will have to use a quadcopter to try and get it down, and then, in all likelihood, a second quadcopter so that you can free the first one. Or go get a long ladder.

The ATMega328P is tried and true, and while it’s been rising in price, it’s still available – with even an updated version that sports a few more peripherals; most importantly, you’re sure to find a 328P in your drawer, if not multiple. Apart from that, the board uses two modules from a Chinese manufacturer, G-Nice, for both GPS and Lora. Both of these modules are cheap, making this tracker all that more accessible; I could easily see this project being sold as a “build your own beacon” kit!

Let’s make it maybe a little nicer, maybe a little cheaper, and maybe decrease the power consumption a tad along the way. We’ll use some of the old tricks, a few new ones, and talk about project-specific aspects that might be easy to miss.

Continue reading “PCB Design Review: HAB Tracker With ATMega328P”

A New Raspberry 5 DSI Cable Makes Using Screens Easier

Arguably the greatest strength of the Raspberry Pi is the ecosystem — it’s well-supported by its creators and the aftermarket. At the same time, the proliferation of different boards has made things more complicated over the years. Thankfully, though, the community is always standing by to help fix any problems. [Rastersoft] has stepped up in this regard, solving an issue with the Raspberry Pi 5 and DSI screen cables.

The root cause is that the DSI cable used on the Raspberry Pi 5 has changed relative to earlier boards. This means that if you use the Pi 5 with many existing screens and DSI cables, you’ll find your flat ribbon cable gets an ugly twist in it. This can be particularly problematic when using the cables in tight cases, where they may end up folded, crushed, or damaged.

[Rastersoft] got around this by designing a new cable that avoided the problem. It not only solves the twist issue, but frees up space around the CPU if you wish to use a cooler. Thanks to modern PCB houses embracing flexible boards, it’s easy to get it produced, too.

This is a great example of the democratization of PCB and electronics production in general. 20 years ago, you wouldn’t be able to make a flex cable like this without ordering 10,000 of them. Today, you can order a handful for your own personal use, and share the design with strangers on a whim. Easy, huh? It’s a beautiful world we live in.

Model Rocket Nails Vertical Landing After Three-Year Effort

Model rocketry has always taken cues from what’s happening in the world of full-scale rockets, with amateur rocketeers doing their best to incorporate the technologies and methods into their creations. That’s not always an easy proposition, though, as this three-year effort to nail a SpaceX-style vertical landing aptly shows.

First of all, hats off to high schooler [Aryan Kapoor] from JRD Propulsion for his tenacity with this project. He started in 2021 with none of the basic skills needed to pull off something like this, but it seems like he quickly learned the ropes. His development program was comprehensive, with static test vehicles, a low-altitude hopper, and extensive testing of the key technology: thrust-vector control. His rocket uses two solid-propellant motors stacked on top of each other, one for ascent and one for descent and landing. They both live in a 3D printed gimbal mount with two servos that give the stack plus and minus seven degrees of thrust vectoring in two dimensions, which is controlled by a custom flight computer with a barometric altimeter and an inertial measurement unit. The landing gear is also clever, using rubber bands to absorb landing forces and syringes as dampers.

The video below shows the first successful test flight and landing. Being a low-altitude flight, everything happens very quickly, which probably made programming a challenge. It looked like the landing engine wasn’t going to fire as the rocket came down significantly off-plumb, but when it finally did light up the rocket straightened and nailed the landing. [Aryan] explains the major bump after the first touchdown as caused by the ascent engine failing to eject; the landing gear and the flight controller handled the extra landing mass with aplomb.

All in all, very nice work from [Aryan], and we’re keen to see this one progress.

Continue reading “Model Rocket Nails Vertical Landing After Three-Year Effort”