Retrotechtacular: A 1960s Look At The 21st Century Home

If you only watch the first 60 seconds of 1967’s “At Home, 2001,” you’ll be forgiven for thinking that the film is riddled with missed predictions. And to be sure, the cold open is rife with them, from disposable paper furniture to seashell-shaped houses that look like they’re extruded from concrete. Really, the only clear winner from that first tranche of predictions is the rise of the microwave oven, which given the expense of magnetrons in 1967 and the complexity of the electronics needed to drive them was a non-obvious development.

But pushing beyond that opening to the meat of this film reveals a fair number of domestic trends that actually did manage to come true, at least partially, and if not by 2001 then shortly thereafter. The film is an educational piece hosted by iconic American newsman Walter Cronkite, who lends his gravitas to the proceedings. The film opens with “Uncle Walter” sonorously pontificating on the unsustainability of the “ticky tacky” spawl of the suburbs and how the situation simply must change.

Continue reading “Retrotechtacular: A 1960s Look At The 21st Century Home”

Sonos Speakers Free To Sing Again

Over at the EEVBlog, [Dave Jones] takes a second look at the Sonos Play 5 Gen 1 that he rescued from the dumpster recently. Despite being solidly built, [Dave] discovered that even the stereo line-in jack can’t be used without registering an account with Sonos. Not to be defeated, he hacks these speakers to make them work standalone.

Bluetooth Audio Amplifier Module (Fosi Audio)

The hack here involves fitting the speaker cabinet with new “guts” in the form of a wireless stereo 2×50 watt digital amplifier [Dave] found online for under $30. This particular model, the Fosi TB21, is almost a perfect fit for the Sonos cabinet — with only minimal Dremel tool encouragement required. It turned out the power supply section of the Sonos main board was easy to isolate. [Dave] couldn’t use the existing amplifiers, so he removed them from their power supply and re-routed the power supply to the Fosi module. He also removed the Sonos wireless interface board from the cabinet, and used an online design tool to make a simple first order Butterworth crossover network set to 2800 Hz to connect the speakers.

The new amplifier board is mounted in the shallow base of the speaker cabinet. It could have easily been oriented either way, but [Dave] chose to install it knobs-forward. This also gave him a reason to toss out the Sonos badge. The resulting modified unit looks very professional, and works well as a Bluetooth speaker for the lab.

We wrote about the opposite conversion last year, where old speakers from the 1960s were hacked to add Sonos capability. You can read about the controversy surrounding Sonos here, and we discussed the issue on the Hackaday Podcast in episode 058.

Continue reading “Sonos Speakers Free To Sing Again”

Australia’s Soft Plastic Recycling Debacle

We’ve all been told to cut back on waste to help prevent environmental crisis on Earth. Reducing waste helps reduce the need to spend time and energy digging up fresh materials, and helps reduce the amount of trash we have to go out and bury in the ground in landfills. Recycling is a big part of this drive, allowing us to divert waste by reprocessing it into fresh new materials.

Sadly, though, recycling isn’t always as magical as it seems. As Australia has just found out, it’s harder than it sounds, and often smoke and mirrors prevent the public from understanding what’s really going on. Here’s how soft plastic recycling went wrong Down Under.

Continue reading “Australia’s Soft Plastic Recycling Debacle”

Giving Your Pets A Digital Squeak

A pet tracker has a particularly grueling set of requirements: small, light, rugged, incredibly long battery life, safe for the pet, and cheap. [Mihai Cuciuc] was looking at the options and wasn’t thrilled with any of them. So as any hacker would, he rolled his own, dubbed Squeak.

It uses an RN2483 module as it is a LoRAWAN module with publically available firmware from Microchip itself. This means [Mihai] could add his code and keep the modem code without having to reverse engineer everything or add a second microcontroller. In addition to the modem, there’s a GPS unit connected via UART. The clever part is the dual voltage regulators — the one powering the GPS is enabled or disabled by the RN2483. In addition, the RAM V_BACKUP line is always powered, which means the RN2483 can power up the GPS and let it get a quick fix (thanks to the RAM backup line).

To maximize the chances of a packet making it through, he made them only have the bare essentials. There are return packets to change the tracker’s mode (such as uplink interval or how often to capture GPS). With some cloud support, [Mihai] created infrastructure to capture the packets and relay them to Telegram. He can request the last location, receive updates, and change modes.

We’ve got you covered if you’re interested in tracking some of your dog’s other habits.

How The Turntable Paradox Works

Leave most objects on top of a turntable, and set it spinning, and they’ll fly off in short order. Do the same with a ball, though, and it somehow manages to roll around on top for quite some time without falling off. [Steve Mould] set about unpacking this “Turntable Paradox” in a recent YouTube video.

In the basic case, the fact that the ball rolls is what keeps it on the turntable. As the turntable spins, the ball spins in the opposite direction, as per Newton’s first law of motion. As long as the ball is allowed to roll up to the same speed as the turntable, it will pretty much stay in place in the absence of any other perturbing forces. In the event the ball is nudged along the turntable, though, it quickly ends up in a more complicated circular motion, orbiting in a ratio to the speed of the turntable itself. [Steve] explains the mechanisms at play, and dives into the mathematics behind what’s going on.

Sometimes, demonstrations like these can seem like mere curiosities. However, understanding physical effects like these has been key to the development of all kinds of complicated and fantastical machinery. Video after the break.

Continue reading “How The Turntable Paradox Works”

A clock based on magnetic viewing film

Magnet Clock Makes Field Lines Visible

The traditional method for visualizing magnetic fields, which your science teacher probably demonstrated at some point, is to sprinkle some iron filings onto a piece of paper and hold it over a magnet. It’s a bit of a messy process though, and nowadays there’s a more modern method available in the form of magnetic viewing films. These work thanks to tiny nickel particles suspended in an oily medium, and come in very handy if you want to examine, say, the magnetic field pattern of a DC electric motor. [Moritz v. Sivers] had another idea for this magic material however, and used it to make a Magnet Viewing Clock.

A DIY clock, opened upThe clock’s front panel looks very similar to a large monochrome LCD, but is actually a big slab of magnetic viewing film. Four disks are mounted behind it, each carrying number-shaped magnetic stickers that are cleverly hidden from view. An Arduino Uno keeps track of time through a real-time clock and operates four stepper motors that rotate the number wheels. When they move into position, their magnetic stickers become visible through the film and you can read the time.

The clock’s mechanical parts are 3D printed, while the digits were cut from a sheet of sticky magnetic foil using a vinyl cutter. If you’d like to try making something similar you’re in luck: [Moritz] made the design files and the Arduino sketch available on his GitHub page. Magnetic viewing films are pretty neat things to play with anyway, and can even be used to read hidden messages.

Continue reading “Magnet Clock Makes Field Lines Visible”

Self-Assembling Virus Model Is 3D Printed

Sometimes a visual or tactile learning aid can make all the difference to elucidating a concept to an audience. In the case viruses and their methods of self-assembly, [AtomicVirology] made a 3D printed device to demonstrate how they work. 

The result of this work is a printed dodecahedron, assembled from multiple components. Each face of the dodecahedron consists of a 5-sided pentagon, and is a separate piece. Each face contains magnets which allow the various faces to stick together. Amazingly, when a bunch of these faces are all thrown into a container and jumbled together, they eventually assemble themselves into complete dodecahedrons.

While it’s no virus, and the parts can’t replicate themselves en masse,  the demonstration is instructive. Viruses themselves self-assemble in a similar fashion, thanks to sub-units that interact with each other in the tumultuous environment of a host cell.

We love a good teaching tool around these parts. 3D printing has the benefit of allowing teachers to create their own such devices with just a few hours spent in some CAD software.

Continue reading “Self-Assembling Virus Model Is 3D Printed”