Testing Oxide Etchants For The Home Semiconductor Fab

Building circuits on a silicon chip is a bit like a game of Tetris — you have to lay down layer after layer of different materials while lining up holes in the existing layers with blocks of the correct shape on new layers. Of course, Tetris generally doesn’t require you to use insanely high temperatures and spectacularly toxic chemicals to play. Or maybe it does; we haven’t played the game in a while, so they might have nerfed things.

Luckily, [ProjectsInFlight] doesn’t treat his efforts to build semiconductors at home like a game — in fact, the first half of his video on etching oxide layers on silicon chips is devoted to the dangers of hydrofluoric acid. As it turns out, despite the fact that HF can dissolve your skin, sear your lungs, and stop your heart, as long as you use a dilute solution of the stuff and take proper precautions, you should be pretty safe around it. This makes sense, since HF is present in small amounts in all manner of consumer products, many of which are methodically tested in search of a practical way to remove oxides from silicon, which [ProjectsInFlight] has spent so much effort recently to learn how to deposit. But such is the ironic lot of a chip maker.

Three products were tested — rust remover, glass etching cream, and a dental porcelain etching gel — against a 300 nm silicon dioxide layer. Etch speed varied widely, from rust remover’s 10 nm/min to glass etching cream’s blazing 240 nm/min — we wonder if that could be moderated by thinning the cream out with a bit of water. Each solution had pros and cons; the liquid rust remover was cheap easy to handle and clean up, while the dental etching gel was extremely easy to deposit but pretty expensive.

The good news was that everything worked, and each performed differently enough that [ProjectsInFlight] now has a range of tools to choose from. We’re looking forward to seeing what’s next — looks like it’ll be masking techniques.

Continue reading “Testing Oxide Etchants For The Home Semiconductor Fab”

You’ve Got Mail: Faster And Faster We Go

When we last left the post office, they had implemented OCR to read even the sloppiest of handwriting. And to augment today’s 99% accuracy rate, there’s a center full of humans who can decipher the rest of those messy addresses with speed and aplomb. Before that, we took a look at many of the machines that make up the automated side of the post office’s movements. But what was being done to improve the customer experience during all of this time?

Quite a bit, as it turns out. In this installment, we’ll take a look at the development of vending machines and programs like Speed Mail, Missile Mail, and V-Mail (no, not voicemail!) as they relate to enhanced customer service over the years.

Continue reading “You’ve Got Mail: Faster And Faster We Go”

Do Bounties Hurt FOSS?

As with many things in life, motivation is everything. This also applies to the development of software, which is a field that has become immensely important over the past decades. Within a commercial context, the motivation  to write software is primarily financial, in that a company’s products are developed by individuals who are being financially compensated for their time. This is often different with Free and Open Source Software (FOSS) projects, where the motivation to develop the software is in many cases derived more out of passion and sometimes a wildly successful hobby rather than any financial incentives.

Yet what if financial incentives are added by those who have a vested interest in seeing certain features added or changed in a FOSS project? While with a commercial project it’s clear (or should be) that the paying customers are the ones whose needs are to be met, with a volunteer-based FOSS project the addition of financial incentives make for a much more fuzzy system. This is where FOSS projects like the Zig programming language have put down their foot, calling FOSS bounties ‘damaging’.

Continue reading “Do Bounties Hurt FOSS?”

Passive Components Get Better

When you want to talk about cool new components, you are probably thinking about chips or, these days, even modules. Passive components like resistors, capacitors, and inductors are a solved problem, right? [Darshill Patel] begs to differ. There is still innovation happening in the passive market, and he highlights some of the recent advances.

There are thick-film resistors that don’t need lead, for example. There are also supercapacitor modules with very low ESR. For inductors, at least one manufacturer is moving away from traditional wire loops and using flat wire windings instead. These have a larger cross-section, which reduces unwanted resistance. In addition, it offers more cooling area for heat dissipation.

Of course, passive components have never been as simple as people think. Picking a capacitor’s value is only half the battle. You also need to consider the material to optimize how it works in your design. Wirewound resistors are also inductors unless you get special non-inductive ones that use special wiring techniques to cancel much of the parasitic inductance.

It shows that you can never stop learning about even the simplest components. We are still waiting to figure out what we want to do with a memristor. While tiny surface mount components are good for some assembly reasons, they also have helped reduce unwanted component effects.

Beating Apple’s Secret Lid Angle Sensor Calibration With Custom Tool

Among the changes made by Apple to its laptops over the years, the transition from a Hall sensor-based sleep sensor to an angle sensor that determines when the lid is closed is a decidedly unpopular one. The reason for this is the need to calibrate this sensor after replacement, using a tool that Apple decided to keep for itself. That is, until recently [Stephan Steins] created a tool which he creatively called the ‘nerd.tool.1‘. This widget can perform this calibration procedure with the press of its two buttons, as demonstrated on [Louis Rossmann]’s YouTube channel.

This new angle sensor was first introduced in late 2019, with Apple’s official reason being an increased level of ‘precision’. As each sensor has to be calibrated correctly in order to measure the magnetic field and determine the associated lid angle, this means that third-party repair shops and determined MacBook owners have to transplant the chip containing the calibration data to a replacement sensor system. Until now, that is. Although the nerd.tool.1 is somewhat pricey at €169 ($179 USD), for a third-party MacBook repair shop this would seem to be a steal.

It is however unfortunate that Apple persists in such anti-repair methods, with recently [Hugh Jeffreys] also calling Apple out on this during a MacBook Pro M1/M2 teardown video. During this teardown [Hugh] came across this angle sensor issue by swapping parts between two otherwise identical MacBook Pros, indicating just how annoying this need to calibrate one tiny lid angle sensor is.

Continue reading “Beating Apple’s Secret Lid Angle Sensor Calibration With Custom Tool”

Drop-In Upgrade PCB Brings USB-C To DualShock 4

Despite a somewhat shaky start, it seems like everyone is finally embracing USB-C. Most gadgets have made the switch these days, and even Apple has (with some external persuasion) gotten on board. That’s great for new hardware, but it can lead to a frustrating experience when you reach for an older device and find a infuriatingly non-oval connector on the bottom.

If one of those devices happens to be Sony’s DualShock 4 controller, [DoganM95] has the fix for you. Sony wisely put the controller’s original micro USB connector on a separate PCB so it could be cheaply replaced without having to toss the main PCB — that same modularity also means it was relatively easy to develop a USB-C upgrade board.

That said, there was a bit of a catch. The USB board on the DualShock 4 also carries a LED module that illuminates the “Light Bar” on the rear of the controller. In this design, [DoganM95] has replaced the original component with a pair of side-firing LEDs. Combined with the extra pins in the flexible printed circuit (FPC) connector necessary to control them, and the pair of 0603 resistors required for USB-C to actually provide power, putting this board together might take a bit more fine-pitch soldering than you’d expect.

Over the last couple of years, we’ve seen a wide array of devices receive DIY USB-C upgrades. In fact, this isn’t even the first time we’ve seen it done on the DualShock 4. But there’s something about hacking a modern port onto a legacy piece of hardware that we just can’t seem to get enough of.

Tech In Plain Sight: Microwave Ovens

Our homes are full of technological marvels, and, as a Hackaday reader, we are betting you know the basic ideas behind a microwave oven even if you haven’t torn one apart for transformers and magnetrons. So we aren’t going to explain how the magnetron rotates water molecules to produce uniform dielectric heating. However, when we see our microwave, we think about two things: 1) this thing is one of the most dangerous things in our house and 2) what makes that little turntable flip a different direction every time you run the thing?

First, a Little History

Westinghouse Powercaster which could, among other things, toast bread in six seconds

People think that Raytheon engineer Percy Spenser, the chief of their power tube division, noticed that while working with a magnetron he found his candy bar had melted. This is, apparently, true, but Spenser wasn’t the first to notice. He was, however, the first to investigate it and legend holds that he popped popcorn and blew up an egg on a colleague’s face (this sounds like an urban legend about “egg on your face” to us). The Raytheon patent goes back to 1945.

However, cooking with radio energy was not a new idea. In 1933, Westinghouse demonstrated cooking foods with a 10 kW 60 MHz transmitter (jump to page 394). According to reports, the device could toast bread in six seconds.  The same equipment could beam power and — reportedly — exposing yourself to the field caused “artificial fever” and an experience like having a cocktail, including a hangover on overindulgence. In fact, doctors would develop radiothermy to heat parts of the body locally, but we don’t suggest spending an hour in the device.

Continue reading “Tech In Plain Sight: Microwave Ovens”