Tindie, The Etsy And Yelp For Electronics

For one reason or another, Tindie has become known as the Etsy for DIY electronics, tinkering, and all things that are regularly featured on Hackaday. Now [Emile] over at Tindie is tackling another problem faced by homebrew electronic wizards: finding good middlemen, board houses, places that do assembly, and machinists. The answer to that is Tindie Biz, something that [Emile] is calling the ‘Yelp for electronics.’

[Emile], the owner and creator of Tindie used to work for Yelp, something that got him more than a few “boo”s at last week’s Hackaday Omnibus Launch Party. Despite the community’s inexplicable hatred of Yelp, [Emile] actually learned a lot; verification is the ultimate problem of user-submitted reviews, and his solution to that problem is to put proof of a transaction in with the review, lest Tindie Biz fall into a disarray of spam and astroturfing.

Already there are over 1,400 manufacturers on Tindie Biz, but [Emile] said right now, his new manufacturer review site needs input from DIYers; the real value is in getting people who have done business with manufacturers around the globe to submit reviews. It needs reviewers, and that’s where you come in. It’s all free, and like most good ideas, something that makes you say, ‘I should have thought of that first.’

Caption CERN Contest Turns Out Big Brains And Comic Brilliance

Week 1 of Hackaday’s Caption CERN Contest is complete. We have to say that the Hackaday.io users outdid themselves with funny captions but we also helped CERN add meaning to one of their orphan images. First a few of our favorite captions:

The Funnies:

If you adjust that scope again, when I haven’t touched the controls, I’m donating you to a city college. – [Johnny B. Goode]

SAFTEY FIRST – The proper way to test a 6kv power supply for ripple on the output. – [milestogoh]

Dr. Otto Gunther Octavius – R&D some years before the accident. – [jlbrian7]

The prize though, goes to Hackaday commenting superstar [DainBramage], who proved he knows us all too well with his Portal inspired caption:

Here we see Doug Rattmann, one of Aperture’s best and brightest, perfecting our neurotoxin prior to delivery.

Congrats [DainBramage], enjoy your shirt from The Hackaday Store!

The Meaning of the Image:

8106409Funny captions weren’t the only thing in the comments though – the image tickled [jlbrian7’s] memory and led to a link for CERN Love. A four-year old blog entry about robots at CERN turned out to be the key to unraveling the mystery of this captionless photo. The image depicts [Robert Horne] working with a prototype of the MANTIS system. MANTIS was a teleoperation manipulator system created to work in sections of the CERN facility which were unsafe for humans due to high levels of radioactivity. The MANTIS story is an epic hack itself, so keep your eyes peeled for a future article covering it! We’ve submitted the information to CERN, and we’re giving [jlbrian7] a T-shirt as well for his contribution to finding the actual caption for this image.

Get Started on Next Week:

The image for week 2 is already up, so head over and see for yourself. We’re eager for your clever captions. Ideally we can also figure out the backstory for each week’s randomly chosen image.

Learning Single-Filament Printing Strength From Arachnids

If you can get over how creepy spiders can be there’s a lot to learn from them. One of nature’s master-builders, they have long been studied for how they produce such strong silk. What we hadn’t realized is that it’s not strictly cylindrical in nature. The spider silk exhibits intermittent expansions to the diameter of the — for lack of a better word — extrusion. This project uses biomimickry to replicate the strength of that design.

The print head is actually four extruders in one. In the clip after the break you can see the black center filament’s rigidity is augmented with three white filaments positioned around it radially. The use of this knowledge? That’s for you to decide. As with some of the most satisfying engineering concepts, this is presented as an art installation. As if the rhythmic movements of that print head weren’t enough, they mounted it on a KUKA and plopped the entire thing down in the center of a room for all to see.

The demo isn’t the only awesome bit. You’ll want to click the link at the top to see the exploded-parts diagram porn found half-way down the page. All is beautiful!

Continue reading “Learning Single-Filament Printing Strength From Arachnids”

Circuit Love With Multicolor Solder Masks

The cheapest PCBs – and therefore most common – are green solder mask with white silkscreen. It works, but it’s also incredibly boring. This is the way things were done up until a few years ago with the explosion of board houses trying to compete for your Yuan, and now getting a red, yellow, black, blue, green, and even OSH purple is possible. This doesn’t mean multiple solder masks aren’t possible, as [Saar] demonstrates with his demonstration of multicolor solder masks and circuit love.

We’ve seen a lot of [Saar]’s designs, including a mixing desk, a cordwood puzzle, and an engineer’s emergency business card, but so far his artistic pieces have been decidedly monochromatic. For this build, [Saar] teamed up with Eurocircuits to create a board that exploits their capabilities.

Althought Eurocircuits has PCB PIXture, a tool for putting graphics on PCBs, [Saar] made this with his own tool, PCBmodE.  The design of both the red and yellow variants are abstract, and only meant to be a demonstration of what can be done with multicolor solder mask. It looks great with five backlit LEDs, and with an acrylic top and bottom, makes a great coaster or art piece.

We like [Saar’s] work so much that we put his Cordwood puzzle in the Hackaday Store.

Digitally Controlled Pot Taper

Those twisty knobs connected to potentiometers aren’t necessarily a strict linear progression from one resistance to another. Potentiometers have a taper. Yes, sometimes it’s a linear taper that’s a straight line from one resistance to another, but you can find log (audio) taper pots, and anti-log taper pots. It’s been this way for a hundred years, and now we have a pot with a digitally controllable taper thanks to a guitar pedal that fits in your shoe.

For the last few years, [John] has been hard at work creating the SoulPedal, a shoe insert that’s the wireless, wearable alternative to expression pedals, wah pedals, and every other guitar effects pedal that uses an ankle. [John] got the idea by replacing the light-sensitive resistor in a wah pedal with a force sensitive resistor in his shoe. It worked, but there were wires. Now the SoulPedal is based on a TI SoC +Radio with all the niceties you would expect.

When designing the ‘base station pedal’, [John] realized he had a digital pot with two channels, and the entire device only uses one of these channels. Instead of letting that little bit of silicon go to waste, [John] wired these two digital pots in parallel, allowing the user to customize the taper of a digital pot. If you’re asking yourself, ‘why’, the answer is, ‘because he could.’

It’s an interesting application for sure, and while this digitally controllable pot can replicate the linear, log, and anti-log tapers, the really interesting thing will be to see what non-standard tapers sound and feel like.

A wood router with automated height adjustment

A Router Table With Height Control

The wood router is a versatile power tool which can be picked up at a low price. Nicer router setups are mounted underneath a table, with the cutting head poking through. This makes it easier and safer to work with the tool.

[Paul] combined his interest in electronics and woodworking by making a router table with automated controls [translation]. The neat part of this build is the automated height control, which ensures accurate cutting depth.

The router is mounted to a threaded rod, which allows it to be moved up and down by a motor. A low cost L298 motor driver provides the power to the motor, which is controlled by an Arduino Uno. A VCNL4020 based sensor board is used to measure distance and accurately set the router height. This tiny proximity sensor looks like a nifty chip, providing distance measurements up to 200 mm and an ambient light sensor in one package.

The routing table has an LCD display and buttons, allowing the user to dial in their desired height. The entire thing was built using recycled bits and well under $100 in new parts.

circuits of oscope

The One Million Dollar Scope Teardown

The Labmaster 10-100zi Oscilloscope is one of the fastest scopes in the world, coming in at a blistering speed of 100GHz with up to 240 Giga samples per second in real time. The scope is made by Teledyne LeCroy, and uses a frequency interleaving technology perfected by LeCroy, which allows it to provide a single 100GHz channel, or two 33GHz channels and a single 65GHz channel. The price tag? One million dollars.

[Shahriar] takes us inside the Teledyne Lecroy factory in Chestnut Ridge, NY where these scope are manufactured, and gives us the grand tour. First, an engineer describes the interleaving frequency technique that allows the lightning fast sample rates. Then they actually tear the million dollar scope down for our viewing pleasure. And if you still want more, they put it back together and run some tests to push the scope to its far reaching limits. Lastly, [Shahriar] takes us on a tour of the plant where the scopes are built.

It’s a lengthy video, so grab your favorite beverage and tuck in! It’s shocking how fast technology progresses. Just about 18 months ago [Shahriar] took us through the then reigning champion of scopes the Agilent DSA-X 96204Q which capturered 160GS/s at 62GHz.

Continue reading “The One Million Dollar Scope Teardown”