FLOSS Weekly Episode 768: Open Source Radio

This week Jonathan Bennett and Doc Searls talk with Tony Zeoli about Netmix and the Radio Station WordPress plugin. The story starts with the Netmix startup, one of the first places doing Internet music in the 1990s. That business did well enough to get bought out just before the Dot Com bubble burst in 2000. Today, Tony runs the Radio Station plugin, which is all about putting a station’s show schedule on a WordPress site.

In the process, the trio covers Internet radio history, the licensing complications around radio and streaming, the state of local radio, and more. Is there a long term future for radio? Does Creative Commons solve the licensing mess? Is AI going to start eating radio, too? All this and more!

Continue reading “FLOSS Weekly Episode 768: Open Source Radio”

High Caliber Engineering On A Low Torque PCB Servo Motor

Building a 3D motor printed motor is one thing, but creating a completely custom servo motor with encoder requires some significant engineering. In the video after the break [365 Robots] takes us through the build process of a closed-loop motor with a custom optical encoder.

The motor, an axial flux design, uses a stack of 0.2mm PCBs with wedge shaped coils clamped in a 3D printed body. It’s similar to some of the other PCB motors we’ve featured, but what really sets this build apart is its custom optical encoder, which was a project in its own right. The 4-bit absolute position encoder uses IR LEDs to shine through an PCB disc with concentric gray code copper encoder rings onto IR receivers. This works because FR4, the composite material used in PCBs doesn’t block IR light.

The motor’s body was printed from ABS to withstand the heat during operation. [365 Robots] didn’t skimp on the testing either, creating a 3D printed closed-loop test stand with load cell and Arduino. Like other PCB motors it produces very little torque, roughly 2% of a typical NEMA17 stepper motor. Even so, the engineering behind this project remains impressive.

Continue reading “High Caliber Engineering On A Low Torque PCB Servo Motor”

3D Mouse With 3D Printed Flexures And PCB Coils

3D mice with six degrees of freedom (6DOF) motion are highly valued by professional CAD users. However, the entry-level versions typically cost upwards of $150 and are produced by a single manufacturer. [Colton Baldridge] has created the OS3M Mouse — an open source alternative using PCB coils and 3D printed flexures.

The primary challenges in creating a 6DOF input device, similar to the 3Dconnexion Space Mouse, lie in developing a mechanical coupling that enables full range motion, and electronics capable of precisely and consistently measuring this motion. After several iterations of printed flexure combinations and trip down the finite element analysis (FEA) rabbit hole, [Colton] had a working single-piece mechanical solution.

To measure the knob’s movement accurately, [Colton] employs inductive sensing. Inductance to Digital Converters (LDCs) assess the inductive alterations across three pairs of PCB coils, each having an opposing metal disk mounted on the knob. This setup allows [Colton] to use a Stewart platform‘s kinematic model calculate theĀ  knob’s relative position. The calculation are done on an STM32 which also acts USB HID send the position data to a computer. For the demo [Colton] created a simple C++ app to translate the position data to Solidworks API calls.

Continue reading “3D Mouse With 3D Printed Flexures And PCB Coils”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Typewriter Orchestra

Have you ever wished you had more control over what goes into a kit keyboard build? Like, a whole lot more control? Well, that’s the idea behind the Akruvia 12×4 Playground by [iketsj].

Image by [iketsj] via YouTube

This is a 48-key ortholinear keyboard, but other than that, it’s a complete blank slate. The kit includes the PCB, diodes, RGB LEDs, and Kailh Choc V1 hot swap sockets, which is really the only choice you don’t have in the matter.

All the rest is up to you, thanks to a generous prototyping area that wraps around three sides of the keys. Bring your own microcontroller and anything else that sounds useful, like displays, rotary encoders, gesture sensors, pointing devices, you name it.
You could even magnetically link a macro pad to one side, as [iketsj] teases in the intro video. [iketsj] has made the kit available through links on their website, and you’ll find a product guide there as well.

Continue reading “Keebin’ With Kristina: The One With The Typewriter Orchestra”

Making An Aircraft Wing Work For An Audience

Many of us will have sat and idly watched the flaps and other moving parts of an airliner wing as we travel, and it’s likely that most of you will know the basics of how an aircraft wing works. But there’s more to an aircraft wing than meets the eye, which is why the Aerospace Bristol museum has an Airbus A320 wing on display. [Chris Lymas] was part of the team which turned a surplus piece of aircraft into an interactive and working exhibit, and he told the Electromagnetic Field audience all about it in his talk Using Arduinos to Resurrect an Airliner Wing.

The talk starts with an explanation of how a variable surface wing works, and then starts to talk about the control systems employed. We’re struck with the similarity to industrial robots, in that this is a a powerful and thus surprisingly dangerous machine to be close to. The various moving surfaces are moved by a series of shafts and gearboxes, driven by a DC motor. Running the show is an Arduino Mega, which has enough interfaces for all the various limit switches.

It’s fascinating to see how the moving parts in an airliner wing work up close, and we’re impressed at the scale of the parts which keep us safe as we fly. Take a look, the video is below the break.

Continue reading “Making An Aircraft Wing Work For An Audience”

The Cockpit Voice Recorder Controversy

Every time there’s a plane crash or other aviation safety incident, we often hear talk of the famous “black box”. Of course, anyone these days will tell you that they’re not black, but orange, for visibility’s sake. Plus, there’s often not one black box, but two! There’s a Flight Data Recorder (FDR), charged with recording aircraft telemetry, and a Cockpit Voice Recorder (CVR), designed to record what’s going on in the cabin.

It sounds straightforward enough, but the cockpit voice recorder has actually become the subject of some controversy in recent times. Let’s talk about the basics of these important safety devices, and why they’re the subject of some debate at the present time.

Continue reading “The Cockpit Voice Recorder Controversy”

Resistor Swap Gives Honda Insights More Power

A common complaint around modern passenger vehicles is that they are over-reliant on electronics, from overly complex infotainment systems to engines that can’t be fixed on one’s own due to the proprietary computer control systems. But even still, when following the circuits to their ends you’ll still ultimately find a physical piece of hardware. A group of Honda Insight owners are taking advantage of this fact to trick the computers in their cars into higher performance with little more than a handful of resistors.

The relatively simple modification to the first-generation Insight involves a shunt resistor, which lets the computer sense the amount of current being drawn from the hybrid battery and delivered to the electric motor. By changing the resistance of this passive component, the computer thinks that the motor is drawing less current and allows more power to be delivered to the drivetrain than originally intended. With the shunt resistor modified, which can be done with either a bypass resistor or a custom circuit board, the only other change is to upgrade the 100 A fuse near the battery for a larger size.

With these two modifications in place, the electric motor gets an additional 40% power boost, which is around five horsepower. But for an electric motor which can output full torque at zero RPM, this is a significant boost especially for a relatively lightweight car that’s often considered under-powered. It’s a relatively easy, inexpensive modification though which means the boost is a good value, although since these older hybrids are getting along in years the next upgrade might be a new traction battery like we’ve seen in the older Priuses.

Thanks to [Aut0l0g1c] for the tip!