Retrotechtacular: ROTOPARK Is A Futuristic Parking Structure From 40 Years Ago

retrotechtacular-rotopark

Pictured above is a functioning model of an automated underground parking structure which was built and used, but obviously it never caught on widely. That makes us a bit sad, as it removes the need to find an empty parking spot every time you use the garage; and having a robot park your car for you seems very future-y.

The gist of the ROTOPARK system is a carousel and elevator system for parking cars. just drive into a single-stall garage at ground level, take your ticket, and walk out the people-hole. The garage stall floor is a sled which moves down an elevator (shown as blue stalls on the left half of the image) to be stored away in the rotating carousels of cars.

Obviously mechanical failure is a huge issue here. What if the elevator breaks? Also, at times of high traffic we think getting your vehicle back out of the system would be quite a bit slower than the “static” parking garages we’re used to. Oh well, maybe some day. Check out the classic marketing video after the break which shows off the concept, construction, and use of the system.

Continue reading “Retrotechtacular: ROTOPARK Is A Futuristic Parking Structure From 40 Years Ago”

Neurogrid circuit board that replicates functions of the human brain.

The Neurogrid – What It Is And What It Is Not

What it is:

Some would argue that replicating the human brain in silicon is impossible. However, the folks over at Brains in Silicon of Stanford University might disagree. They’ve created a circuit board capable of simulating one million neurons and up to 6 billion synapses in real-time. Yes, that’s billion with a “B”. They call their new type of computer The Neurogrid.

The Neurogrid board boasts 16 of their Neurocore chips, with each one holding 256 x 256 “neurons”. It attempts to function like a brain by using analog signals for computations and digital signals for communication. “Soft-wires” can run between the silicon neurons, mimicking the brain’s synapses.

Be sure to stick around after the break, where we discuss the limitations of the Neurogrid, along with a video from its creators.

Continue reading “The Neurogrid – What It Is And What It Is Not”

A Webcam Based Posture Sensor

Webcam based posture sensor

Even for hobby projects, iteration is very important. It allows us to improve upon and fine-tune our existing designs making them even better. [Max] wrote in to tell us about his latest posture sensor, this time, built around a webcam.

We covered [Max’s] first posture sensor back in February, which utilized an ultrasonic distance sensor to determine if you had correct posture (or not). Having spent time with this sensor and having received lots of feedback, he decided to scrap the idea of using an ultrasonic distance sensor altogether. It simply had too many issues: issues with mounting the sensor on different chairs, constantly hearing the clicking of the sensor, and more.  After being inspired by a very similar blog post to his original that mounted the sensor on a computer monitor, [Max] was back to work. This time, rather than using an ultrasonic distance sensor, he decided to use a webcam. Armed with Processing and OpenCV, he greatly improved upon the first version of his posture sensor. All of his code is provided on his website, be sure to check it out and give it a whirl!

Iteration leads to many improvements and it is an integral part of both hacking and engineering. What projects have you redesigned or rebuild? Let us know!

3D Printed Cast With Ultrasound Emitter Promises Faster Healing Times

3dcast-640x426

Almost a year ago, [Jake Evill] broke his hand stopping a fight between his friend and another person. And over the next few weeks he realized how archaic  plaster casts really are — clunky, smelly, itchy — not exactly conducive to healing, other than by keeping your arm completely immobilized. That’s when he came up with the Cortex Cast — a 3D printed exoskeleton cast that provides support, allows your arm to breath, and can even get wet!

Fast forward to today, and another designer is playing with 3D printed casts — but ones that could potentially speed up the healing time! Turkish designer [Deniz Karasahin] heard about a system called the Exogen, which is a low-intensity ultrasound system which can help speed up bone repair, sometimes up to 38% faster. The problem? It doesn’t really work well with regular casts, because the transducer needs to touch the skin — the solution? A 3D printed cast of course!

You see, the ultrasound tech has been around for over 20 years, but has never really seen mainstream use because the difficulties in actually using it, until perhaps now.

Better yet, they’re also hoping to launch trials in the US soon — 3D printers are only good for trinkets and doodads? Pfft.

[Thanks William!]

A Low Cost, Solar-Powered Swamp Cooler

A looming, torturous summer is preparing to bear down on many of us, making this dirt-cheap swamp cooler build an attractive hack to fend off the heat.

Though this is a pretty standard evaporative cooler, the design comes together in a tidy and transportable finished product. The base is a ~$3, 5-gallon bucket from a local hardware store with its accompanying Styrofoam liner. Three 2 1/8″ holes carved into the side of both the bucket and liner will snugly fit some inch-and-a-half PVC pipe with no need for glue.

One last cut into the lid to seat a small desk fan rounds off this build—or you can chop into the styrofoam liner’s lid if you prefer. The video demonstrates using a 15W solar panel to run the fan, and we have to admit that the cooler seems to be an excellent low-cost build. It does, however, require a frozen gallon jug inside to pump out the chilled air for around 5-6 hours per jug. Maybe one of our frugal and mathematically-inclined readers can throw out some guesstimations for the cost of stocking the bucket with a jug of frozen water a couple times a day? Video after the jump.

Continue reading “A Low Cost, Solar-Powered Swamp Cooler”

Recycled Foam Box Is Now A Weather Station

Raspberry pi in foam box

When [Ioannis] received some high resolution LCD’s in a tattered foam box, he posed to himself a most interesting question – Should he throw the foam box away, or use it as a container for a project? Fortunately for us, he decided on the latter and threw together a very capable weather station!

Having only an hour to spare, [Ioannis] grabbed a Raspberry Pi, WiFi USB stick and a camera module and went to work. He mounted the camera module to the foam lid using a highly advanced technique, and soldered a cable that would power the device directly to D17 – a Zener diode that sits on the bottom of the board.

For the weather data, he’s using another design of his – the Sensor Stick. This nifty device — which we featured over the weekend — is about the size of a stick of chewing gum, and sports an array of sensors including the popular BMP085, which can measure pressure and temperature .

He wraps up everything using open source software to get the data from the weather station. Pretty impressive for an old foam box and an hours time! This would be an interesting start to a home automation system. Connect it to motorized windows and/or a sprinkler system and he’s on his way to claiming The Hackaday Prize.

Bacon Alarm Clock Won’t Burn Your House Down

Bacon Alarm Clock

If you have trouble waking up in the morning then maybe this alarm clock is for you. A bacon-aroma-releasing alarm clock!

Fueled by her love of bacon, Instructable’s user [llopez2005] decided she wanted to try making an alarm clock that would actually get her out of bed, hungry, and ready for bacon. Instead of trying to design a clock that would actually cook bacon — which might be a bit dangerous — she’s found an extract of bacon aroma which she could slowly release instead.

The clock makes use of an Arduino Uno with a RTC shield as well as a LED array for the clock’s display. The “bacon” is actually made out of bake-able clay, which sits on top of unscented wax, infused with the bacon aroma oil. The bacon and “bacon grease” sit in a baby frying pan over top of a small heater element designed for warming candles. Before the alarm goes off, a SSR turns on the element which slowly melts some of the wax, releasing its ever so delicious scent.

What we really like about the clock is the level of detail she put into its appearance. The base is designed after a small wood burning stove they have in the house, and she’s even made a Plexiglas display case for the frying pan — with holes to let the aroma out though of course!